reordering
This commit is contained in:
838
core/agent/agent.go
Normal file
838
core/agent/agent.go
Normal file
@@ -0,0 +1,838 @@
|
||||
package agent
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"os"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/mudler/local-agent-framework/pkg/xlog"
|
||||
|
||||
"github.com/mudler/local-agent-framework/core/action"
|
||||
"github.com/mudler/local-agent-framework/pkg/llm"
|
||||
"github.com/sashabaranov/go-openai"
|
||||
)
|
||||
|
||||
const (
|
||||
UserRole = "user"
|
||||
AssistantRole = "assistant"
|
||||
SystemRole = "system"
|
||||
)
|
||||
|
||||
type Agent struct {
|
||||
sync.Mutex
|
||||
options *options
|
||||
Character Character
|
||||
client *openai.Client
|
||||
jobQueue chan *Job
|
||||
actionContext *action.ActionContext
|
||||
context *action.ActionContext
|
||||
|
||||
currentReasoning string
|
||||
currentState *action.StateResult
|
||||
nextAction Action
|
||||
nextActionParams *action.ActionParams
|
||||
currentConversation Messages
|
||||
selfEvaluationInProgress bool
|
||||
pause bool
|
||||
|
||||
newConversations chan openai.ChatCompletionMessage
|
||||
}
|
||||
|
||||
type RAGDB interface {
|
||||
Store(s string) error
|
||||
Reset() error
|
||||
Search(s string, similarEntries int) ([]string, error)
|
||||
Count() int
|
||||
}
|
||||
|
||||
func New(opts ...Option) (*Agent, error) {
|
||||
options, err := newOptions(opts...)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to set options: %v", err)
|
||||
}
|
||||
|
||||
client := llm.NewClient(options.LLMAPI.APIKey, options.LLMAPI.APIURL, options.timeout)
|
||||
|
||||
c := context.Background()
|
||||
if options.context != nil {
|
||||
c = options.context
|
||||
}
|
||||
|
||||
ctx, cancel := context.WithCancel(c)
|
||||
a := &Agent{
|
||||
jobQueue: make(chan *Job),
|
||||
options: options,
|
||||
client: client,
|
||||
Character: options.character,
|
||||
currentState: &action.StateResult{},
|
||||
context: action.NewContext(ctx, cancel),
|
||||
}
|
||||
|
||||
if a.options.statefile != "" {
|
||||
if _, err := os.Stat(a.options.statefile); err == nil {
|
||||
if err = a.LoadState(a.options.statefile); err != nil {
|
||||
return a, fmt.Errorf("failed to load state: %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// var programLevel = new(xlog.LevelVar) // Info by default
|
||||
// h := xlog.NewTextHandler(os.Stdout, &xlog.HandlerOptions{Level: programLevel})
|
||||
// xlog = xlog.New(h)
|
||||
//programLevel.Set(a.options.logLevel)
|
||||
|
||||
xlog.Info(
|
||||
"Agent created",
|
||||
"agent", a.Character.Name,
|
||||
"character", a.Character.String(),
|
||||
"state", a.State().String(),
|
||||
"goal", a.options.permanentGoal,
|
||||
)
|
||||
|
||||
return a, nil
|
||||
}
|
||||
|
||||
// StopAction stops the current action
|
||||
// if any. Can be called before adding a new job.
|
||||
func (a *Agent) StopAction() {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
if a.actionContext != nil {
|
||||
xlog.Debug("Stopping current action", "agent", a.Character.Name)
|
||||
a.actionContext.Cancel()
|
||||
}
|
||||
}
|
||||
|
||||
func (a *Agent) Context() context.Context {
|
||||
return a.context.Context
|
||||
}
|
||||
|
||||
func (a *Agent) ActionContext() context.Context {
|
||||
return a.actionContext.Context
|
||||
}
|
||||
|
||||
func (a *Agent) ConversationChannel() chan openai.ChatCompletionMessage {
|
||||
return a.newConversations
|
||||
}
|
||||
|
||||
// Ask is a pre-emptive, blocking call that returns the response as soon as it's ready.
|
||||
// It discards any other computation.
|
||||
func (a *Agent) Ask(opts ...JobOption) *JobResult {
|
||||
xlog.Debug("Agent is being asked", "agent", a.Character.Name)
|
||||
defer func() {
|
||||
xlog.Debug("Agent has finished being asked", "agent", a.Character.Name)
|
||||
}()
|
||||
|
||||
//a.StopAction()
|
||||
j := NewJob(
|
||||
append(
|
||||
opts,
|
||||
WithReasoningCallback(a.options.reasoningCallback),
|
||||
WithResultCallback(a.options.resultCallback),
|
||||
)...,
|
||||
)
|
||||
xlog.Debug("Job created", "agent", a.Character.Name, "job", j)
|
||||
a.jobQueue <- j
|
||||
xlog.Debug("Waiting result", "agent", a.Character.Name, "job", j)
|
||||
return j.Result.WaitResult()
|
||||
}
|
||||
|
||||
func (a *Agent) CurrentConversation() []openai.ChatCompletionMessage {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
return a.currentConversation
|
||||
}
|
||||
|
||||
func (a *Agent) SetConversation(conv []openai.ChatCompletionMessage) {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
a.currentConversation = conv
|
||||
}
|
||||
|
||||
func (a *Agent) askLLM(ctx context.Context, conversation []openai.ChatCompletionMessage) (openai.ChatCompletionMessage, error) {
|
||||
resp, err := a.client.CreateChatCompletion(ctx,
|
||||
openai.ChatCompletionRequest{
|
||||
Model: a.options.LLMAPI.Model,
|
||||
Messages: conversation,
|
||||
},
|
||||
)
|
||||
if err != nil {
|
||||
return openai.ChatCompletionMessage{}, err
|
||||
}
|
||||
|
||||
if len(resp.Choices) != 1 {
|
||||
return openai.ChatCompletionMessage{}, fmt.Errorf("no enough choices: %w", err)
|
||||
}
|
||||
|
||||
return resp.Choices[0].Message, nil
|
||||
}
|
||||
|
||||
func (a *Agent) ResetConversation() {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
|
||||
xlog.Info("Resetting conversation", "agent", a.Character.Name)
|
||||
|
||||
// store into memory the conversation before pruning it
|
||||
// TODO: Shall we summarize the conversation into a bullet list of highlights
|
||||
// using the LLM instead?
|
||||
if a.options.enableLongTermMemory {
|
||||
xlog.Info("Saving conversation", "agent", a.Character.Name, "conversation size", len(a.currentConversation))
|
||||
|
||||
if a.options.enableSummaryMemory && len(a.currentConversation) > 0 {
|
||||
|
||||
msg, err := a.askLLM(a.context.Context, []openai.ChatCompletionMessage{{
|
||||
Role: "user",
|
||||
Content: "Summarize the conversation below, keep the highlights as a bullet list:\n" + Messages(a.currentConversation).String(),
|
||||
}})
|
||||
if err != nil {
|
||||
xlog.Error("Error summarizing conversation", "error", err)
|
||||
}
|
||||
|
||||
if err := a.options.ragdb.Store(msg.Content); err != nil {
|
||||
xlog.Error("Error storing into memory", "error", err)
|
||||
}
|
||||
} else {
|
||||
for _, message := range a.currentConversation {
|
||||
if message.Role == "user" {
|
||||
if err := a.options.ragdb.Store(message.Content); err != nil {
|
||||
xlog.Error("Error storing into memory", "error", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
a.currentConversation = []openai.ChatCompletionMessage{}
|
||||
}
|
||||
|
||||
var ErrContextCanceled = fmt.Errorf("context canceled")
|
||||
|
||||
func (a *Agent) Stop() {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
a.context.Cancel()
|
||||
}
|
||||
|
||||
func (a *Agent) Pause() {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
a.pause = true
|
||||
}
|
||||
|
||||
func (a *Agent) Resume() {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
a.pause = false
|
||||
}
|
||||
|
||||
func (a *Agent) Paused() bool {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
return a.pause
|
||||
}
|
||||
|
||||
func (a *Agent) Memory() RAGDB {
|
||||
return a.options.ragdb
|
||||
}
|
||||
|
||||
func (a *Agent) runAction(chosenAction Action, params action.ActionParams) (result string, err error) {
|
||||
for _, action := range a.systemInternalActions() {
|
||||
if action.Definition().Name == chosenAction.Definition().Name {
|
||||
if result, err = action.Run(a.actionContext, params); err != nil {
|
||||
return "", fmt.Errorf("error running action: %w", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
xlog.Info("Running action", "action", chosenAction.Definition().Name, "agent", a.Character.Name)
|
||||
|
||||
if chosenAction.Definition().Name.Is(action.StateActionName) {
|
||||
// We need to store the result in the state
|
||||
state := action.StateResult{}
|
||||
|
||||
err = params.Unmarshal(&state)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("error unmarshalling state of the agent: %w", err)
|
||||
}
|
||||
// update the current state with the one we just got from the action
|
||||
a.currentState = &state
|
||||
|
||||
// update the state file
|
||||
if a.options.statefile != "" {
|
||||
if err := a.SaveState(a.options.statefile); err != nil {
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (a *Agent) consumeJob(job *Job, role string) {
|
||||
a.Lock()
|
||||
paused := a.pause
|
||||
a.Unlock()
|
||||
|
||||
if paused {
|
||||
xlog.Info("Agent is paused, skipping job", "agent", a.Character.Name)
|
||||
job.Result.Finish(fmt.Errorf("agent is paused"))
|
||||
return
|
||||
}
|
||||
|
||||
// We are self evaluating if we consume the job as a system role
|
||||
selfEvaluation := role == SystemRole
|
||||
|
||||
a.Lock()
|
||||
// Set the action context
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
a.actionContext = action.NewContext(ctx, cancel)
|
||||
a.selfEvaluationInProgress = selfEvaluation
|
||||
if len(job.conversationHistory) != 0 {
|
||||
a.currentConversation = job.conversationHistory
|
||||
}
|
||||
a.Unlock()
|
||||
|
||||
defer func() {
|
||||
a.Lock()
|
||||
if a.actionContext != nil {
|
||||
a.actionContext.Cancel()
|
||||
a.actionContext = nil
|
||||
}
|
||||
a.Unlock()
|
||||
}()
|
||||
|
||||
if selfEvaluation {
|
||||
defer func() {
|
||||
a.Lock()
|
||||
a.selfEvaluationInProgress = false
|
||||
a.Unlock()
|
||||
}()
|
||||
}
|
||||
|
||||
//if job.Image != "" {
|
||||
// TODO: Use llava to explain the image content
|
||||
//}
|
||||
// Add custom prompts
|
||||
for _, prompt := range a.options.prompts {
|
||||
message := prompt.Render(a)
|
||||
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: prompt.Role(),
|
||||
Content: message,
|
||||
}}, a.currentConversation...)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: move to a Promptblock?
|
||||
if a.options.systemPrompt != "" {
|
||||
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "system",
|
||||
Content: a.options.systemPrompt,
|
||||
}}, a.currentConversation...)
|
||||
}
|
||||
}
|
||||
|
||||
if job.Text != "" {
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
Content: job.Text,
|
||||
})
|
||||
}
|
||||
|
||||
// TODO: move to a promptblock?
|
||||
// RAG
|
||||
if a.options.enableLongTermMemory && len(a.currentConversation) > 0 {
|
||||
// Walk conversation from bottom to top, and find the first message of the user
|
||||
// to use it as a query to the KB
|
||||
var userMessage string
|
||||
for i := len(a.currentConversation) - 1; i >= 0; i-- {
|
||||
xlog.Info("[Long term memory] Conversation", "role", a.currentConversation[i].Role, "Content", a.currentConversation[i].Content)
|
||||
if a.currentConversation[i].Role == "user" {
|
||||
userMessage = a.currentConversation[i].Content
|
||||
break
|
||||
}
|
||||
}
|
||||
xlog.Info("[Long term memory] User message", "agent", a.Character.Name, "message", userMessage)
|
||||
|
||||
if userMessage != "" {
|
||||
results, err := a.options.ragdb.Search(userMessage, a.options.kbResults)
|
||||
if err != nil {
|
||||
xlog.Info("Error finding similar strings inside KB:", "error", err)
|
||||
|
||||
// job.Result.Finish(fmt.Errorf("error finding similar strings inside KB: %w", err))
|
||||
// return
|
||||
}
|
||||
|
||||
if len(results) != 0 {
|
||||
|
||||
formatResults := ""
|
||||
for _, r := range results {
|
||||
formatResults += fmt.Sprintf("- %s \n", r)
|
||||
}
|
||||
xlog.Info("Found similar strings in KB", "agent", a.Character.Name, "results", formatResults)
|
||||
|
||||
// a.currentConversation = append(a.currentConversation,
|
||||
// openai.ChatCompletionMessage{
|
||||
// Role: "system",
|
||||
// Content: fmt.Sprintf("Given the user input you have the following in memory:\n%s", formatResults),
|
||||
// },
|
||||
// )
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "system",
|
||||
Content: fmt.Sprintf("Given the user input you have the following in memory:\n%s", formatResults),
|
||||
}}, a.currentConversation...)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
xlog.Info("[Long term memory] No conversation available", "agent", a.Character.Name)
|
||||
}
|
||||
|
||||
var pickTemplate string
|
||||
var reEvaluationTemplate string
|
||||
|
||||
if selfEvaluation {
|
||||
pickTemplate = pickSelfTemplate
|
||||
reEvaluationTemplate = reSelfEvalTemplate
|
||||
} else {
|
||||
pickTemplate = pickActionTemplate
|
||||
reEvaluationTemplate = reEvalTemplate
|
||||
}
|
||||
|
||||
// choose an action first
|
||||
var chosenAction Action
|
||||
var reasoning string
|
||||
var actionParams action.ActionParams
|
||||
|
||||
if a.nextAction != nil {
|
||||
// if we are being re-evaluated, we already have the action
|
||||
// and the reasoning. Consume it here and reset it
|
||||
chosenAction = a.nextAction
|
||||
reasoning = a.currentReasoning
|
||||
actionParams = *a.nextActionParams
|
||||
a.currentReasoning = ""
|
||||
a.nextActionParams = nil
|
||||
a.nextAction = nil
|
||||
} else {
|
||||
var err error
|
||||
chosenAction, actionParams, reasoning, err = a.pickAction(ctx, pickTemplate, a.currentConversation)
|
||||
if err != nil {
|
||||
xlog.Error("Error picking action", "error", err)
|
||||
job.Result.Finish(err)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
//xlog.Debug("Picked action", "agent", a.Character.Name, "action", chosenAction.Definition().Name, "reasoning", reasoning)
|
||||
if chosenAction == nil {
|
||||
// If no action was picked up, the reasoning is the message returned by the assistant
|
||||
// so we can consume it as if it was a reply.
|
||||
//job.Result.SetResult(ActionState{ActionCurrentState{nil, nil, "No action to do, just reply"}, ""})
|
||||
//job.Result.Finish(fmt.Errorf("no action to do"))\
|
||||
xlog.Info("No action to do, just reply", "agent", a.Character.Name, "reasoning", reasoning)
|
||||
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: "assistant",
|
||||
Content: reasoning,
|
||||
})
|
||||
job.Result.SetResponse(reasoning)
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
|
||||
if chosenAction.Definition().Name.Is(action.StopActionName) {
|
||||
xlog.Info("LLM decided to stop")
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
|
||||
// if we force a reasoning, we need to generate the parameters
|
||||
if a.options.forceReasoning || actionParams == nil {
|
||||
xlog.Info("Generating parameters",
|
||||
"agent", a.Character.Name,
|
||||
"action", chosenAction.Definition().Name,
|
||||
"reasoning", reasoning,
|
||||
)
|
||||
|
||||
params, err := a.generateParameters(ctx, pickTemplate, chosenAction, a.currentConversation, reasoning)
|
||||
if err != nil {
|
||||
job.Result.Finish(fmt.Errorf("error generating action's parameters: %w", err))
|
||||
return
|
||||
}
|
||||
actionParams = params.actionParams
|
||||
}
|
||||
|
||||
xlog.Info(
|
||||
"Generated parameters",
|
||||
"agent", a.Character.Name,
|
||||
"action", chosenAction.Definition().Name,
|
||||
"reasoning", reasoning,
|
||||
"params", actionParams.String(),
|
||||
)
|
||||
|
||||
if actionParams == nil {
|
||||
job.Result.Finish(fmt.Errorf("no parameters"))
|
||||
return
|
||||
}
|
||||
|
||||
if !job.Callback(ActionCurrentState{chosenAction, actionParams, reasoning}) {
|
||||
job.Result.SetResult(ActionState{ActionCurrentState{chosenAction, actionParams, reasoning}, "stopped by callback"})
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
|
||||
if selfEvaluation && a.options.initiateConversations &&
|
||||
chosenAction.Definition().Name.Is(action.ConversationActionName) {
|
||||
|
||||
message := action.ConversationActionResponse{}
|
||||
if err := actionParams.Unmarshal(&message); err != nil {
|
||||
job.Result.Finish(fmt.Errorf("error unmarshalling conversation response: %w", err))
|
||||
return
|
||||
}
|
||||
|
||||
a.currentConversation = []openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: message.Message,
|
||||
},
|
||||
}
|
||||
go func() {
|
||||
a.newConversations <- openai.ChatCompletionMessage{
|
||||
Role: "assistant",
|
||||
Content: message.Message,
|
||||
}
|
||||
}()
|
||||
job.Result.SetResponse("decided to initiate a new conversation")
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
|
||||
// If we don't have to reply , run the action!
|
||||
if !chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
||||
result, err := a.runAction(chosenAction, actionParams)
|
||||
if err != nil {
|
||||
//job.Result.Finish(fmt.Errorf("error running action: %w", err))
|
||||
//return
|
||||
// make the LLM aware of the error of running the action instead of stopping the job here
|
||||
result = fmt.Sprintf("Error running tool: %v", err)
|
||||
}
|
||||
|
||||
stateResult := ActionState{ActionCurrentState{chosenAction, actionParams, reasoning}, result}
|
||||
job.Result.SetResult(stateResult)
|
||||
job.CallbackWithResult(stateResult)
|
||||
|
||||
// calling the function
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: "assistant",
|
||||
FunctionCall: &openai.FunctionCall{
|
||||
Name: chosenAction.Definition().Name.String(),
|
||||
Arguments: actionParams.String(),
|
||||
},
|
||||
})
|
||||
|
||||
// result of calling the function
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: openai.ChatMessageRoleTool,
|
||||
Content: result,
|
||||
Name: chosenAction.Definition().Name.String(),
|
||||
ToolCallID: chosenAction.Definition().Name.String(),
|
||||
})
|
||||
|
||||
//a.currentConversation = append(a.currentConversation, messages...)
|
||||
//a.currentConversation = messages
|
||||
|
||||
// given the result, we can now ask OpenAI to complete the conversation or
|
||||
// to continue using another tool given the result
|
||||
followingAction, followingParams, reasoning, err := a.pickAction(ctx, reEvaluationTemplate, a.currentConversation)
|
||||
if err != nil {
|
||||
job.Result.Finish(fmt.Errorf("error picking action: %w", err))
|
||||
return
|
||||
}
|
||||
|
||||
if followingAction != nil &&
|
||||
!followingAction.Definition().Name.Is(action.ReplyActionName) &&
|
||||
!chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
||||
// We need to do another action (?)
|
||||
// The agent decided to do another action
|
||||
// call ourselves again
|
||||
a.currentReasoning = reasoning
|
||||
a.nextAction = followingAction
|
||||
a.nextActionParams = &followingParams
|
||||
job.Text = ""
|
||||
a.consumeJob(job, role)
|
||||
return
|
||||
} else if followingAction == nil {
|
||||
if !a.options.forceReasoning {
|
||||
msg := openai.ChatCompletionMessage{
|
||||
Role: "assistant",
|
||||
Content: reasoning,
|
||||
}
|
||||
|
||||
a.currentConversation = append(a.currentConversation, msg)
|
||||
job.Result.SetResponse(msg.Content)
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// At this point can only be a reply action
|
||||
|
||||
// decode the response
|
||||
replyResponse := action.ReplyResponse{}
|
||||
|
||||
if err := actionParams.Unmarshal(&replyResponse); err != nil {
|
||||
job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
|
||||
return
|
||||
}
|
||||
|
||||
// If we have already a reply from the action, just return it.
|
||||
// Otherwise generate a full conversation to get a proper message response
|
||||
// if chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
||||
// replyResponse := action.ReplyResponse{}
|
||||
// if err := params.actionParams.Unmarshal(&replyResponse); err != nil {
|
||||
// job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
|
||||
// return
|
||||
// }
|
||||
// if replyResponse.Message != "" {
|
||||
// job.Result.SetResponse(replyResponse.Message)
|
||||
// job.Result.Finish(nil)
|
||||
// return
|
||||
// }
|
||||
// }
|
||||
|
||||
// If we have a hud, display it
|
||||
if a.options.enableHUD {
|
||||
var promptHUD *PromptHUD
|
||||
if a.options.enableHUD {
|
||||
h := a.prepareHUD()
|
||||
promptHUD = &h
|
||||
}
|
||||
|
||||
prompt, err := renderTemplate(hudTemplate, promptHUD, a.systemInternalActions(), reasoning)
|
||||
if err != nil {
|
||||
job.Result.Finish(fmt.Errorf("error renderTemplate: %w", err))
|
||||
return
|
||||
}
|
||||
if !a.currentConversation.Exist(prompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "system",
|
||||
Content: prompt,
|
||||
},
|
||||
}, a.currentConversation...)
|
||||
}
|
||||
}
|
||||
|
||||
// Generate a human-readable response
|
||||
// resp, err := a.client.CreateChatCompletion(ctx,
|
||||
// openai.ChatCompletionRequest{
|
||||
// Model: a.options.LLMAPI.Model,
|
||||
// Messages: append(a.currentConversation,
|
||||
// openai.ChatCompletionMessage{
|
||||
// Role: "system",
|
||||
// Content: "Assistant thought: " + replyResponse.Message,
|
||||
// },
|
||||
// ),
|
||||
// },
|
||||
// )
|
||||
|
||||
if !a.options.forceReasoning {
|
||||
msg := openai.ChatCompletionMessage{
|
||||
Role: "assistant",
|
||||
Content: replyResponse.Message,
|
||||
}
|
||||
|
||||
a.currentConversation = append(a.currentConversation, msg)
|
||||
job.Result.SetResponse(msg.Content)
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
|
||||
msg, err := a.askLLM(ctx, append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: "system",
|
||||
Content: "The assistant needs to reply without using any tool.",
|
||||
}))
|
||||
if err != nil {
|
||||
job.Result.Finish(err)
|
||||
return
|
||||
}
|
||||
|
||||
// If we didn't got any message, we can use the response from the action
|
||||
if chosenAction.Definition().Name.Is(action.ReplyActionName) && msg.Content == "" ||
|
||||
strings.Contains(msg.Content, "<tool_call>") {
|
||||
xlog.Info("No output returned from conversation, using the action response as a reply " + replyResponse.Message)
|
||||
|
||||
msg = openai.ChatCompletionMessage{
|
||||
Role: "assistant",
|
||||
Content: replyResponse.Message,
|
||||
}
|
||||
}
|
||||
|
||||
a.currentConversation = append(a.currentConversation, msg)
|
||||
job.Result.SetResponse(msg.Content)
|
||||
job.Result.Finish(nil)
|
||||
}
|
||||
|
||||
// This is running in the background.
|
||||
func (a *Agent) periodicallyRun(timer *time.Timer) {
|
||||
// Remember always to reset the timer - if we don't the agent will stop..
|
||||
defer timer.Reset(a.options.periodicRuns)
|
||||
|
||||
a.StopAction()
|
||||
xlog.Debug("Agent is running periodically", "agent", a.Character.Name)
|
||||
|
||||
// TODO: Would be nice if we have a special action to
|
||||
// contact the user. This would actually make sure that
|
||||
// if the agent wants to initiate a conversation, it can do so.
|
||||
// This would be a special action that would be picked up by the agent
|
||||
// and would be used to contact the user.
|
||||
|
||||
xlog.Info("START -- Periodically run is starting")
|
||||
|
||||
// if len(a.CurrentConversation()) != 0 {
|
||||
// // Here the LLM could decide to store some part of the conversation too in the memory
|
||||
// evaluateMemory := NewJob(
|
||||
// WithText(
|
||||
// `Evaluate the current conversation and decide if we need to store some relevant informations from it`,
|
||||
// ),
|
||||
// WithReasoningCallback(a.options.reasoningCallback),
|
||||
// WithResultCallback(a.options.resultCallback),
|
||||
// )
|
||||
// a.consumeJob(evaluateMemory, SystemRole)
|
||||
|
||||
// a.ResetConversation()
|
||||
// }
|
||||
|
||||
if !a.options.standaloneJob {
|
||||
a.ResetConversation()
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Here we go in a loop of
|
||||
// - asking the agent to do something
|
||||
// - evaluating the result
|
||||
// - asking the agent to do something else based on the result
|
||||
|
||||
// whatNext := NewJob(WithText("Decide what to do based on the state"))
|
||||
whatNext := NewJob(
|
||||
WithText(innerMonologueTemplate),
|
||||
WithReasoningCallback(a.options.reasoningCallback),
|
||||
WithResultCallback(a.options.resultCallback),
|
||||
)
|
||||
a.consumeJob(whatNext, SystemRole)
|
||||
a.ResetConversation()
|
||||
|
||||
xlog.Info("STOP -- Periodically run is done")
|
||||
|
||||
// Save results from state
|
||||
|
||||
// a.ResetConversation()
|
||||
|
||||
// doWork := NewJob(WithText("Select the tool to use based on your goal and the current state."))
|
||||
// a.consumeJob(doWork, SystemRole)
|
||||
|
||||
// results := []string{}
|
||||
// for _, v := range doWork.Result.State {
|
||||
// results = append(results, v.Result)
|
||||
// }
|
||||
|
||||
// a.ResetConversation()
|
||||
|
||||
// // Here the LLM could decide to do something based on the result of our automatic action
|
||||
// evaluateAction := NewJob(
|
||||
// WithText(
|
||||
// `Evaluate the current situation and decide if we need to execute other tools (for instance to store results into permanent, or short memory).
|
||||
// We have done the following actions:
|
||||
// ` + strings.Join(results, "\n"),
|
||||
// ))
|
||||
// a.consumeJob(evaluateAction, SystemRole)
|
||||
|
||||
// a.ResetConversation()
|
||||
}
|
||||
|
||||
func (a *Agent) prepareIdentity() error {
|
||||
|
||||
if a.options.characterfile != "" {
|
||||
if _, err := os.Stat(a.options.characterfile); err == nil {
|
||||
// if there is a file, load the character back
|
||||
if err = a.LoadCharacter(a.options.characterfile); err != nil {
|
||||
return fmt.Errorf("failed to load character: %v", err)
|
||||
}
|
||||
} else {
|
||||
if a.options.randomIdentity {
|
||||
if err = a.generateIdentity(a.options.randomIdentityGuidance); err != nil {
|
||||
return fmt.Errorf("failed to generate identity: %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
// otherwise save it for next time
|
||||
if err = a.SaveCharacter(a.options.characterfile); err != nil {
|
||||
return fmt.Errorf("failed to save character: %v", err)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if err := a.generateIdentity(a.options.randomIdentityGuidance); err != nil {
|
||||
return fmt.Errorf("failed to generate identity: %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *Agent) Run() error {
|
||||
// The agent run does two things:
|
||||
// picks up requests from a queue
|
||||
// and generates a response/perform actions
|
||||
|
||||
if err := a.prepareIdentity(); err != nil {
|
||||
return fmt.Errorf("failed to prepare identity: %v", err)
|
||||
}
|
||||
|
||||
// It is also preemptive.
|
||||
// That is, it can interrupt the current action
|
||||
// if another one comes in.
|
||||
|
||||
// If there is no action, periodically evaluate if it has to do something on its own.
|
||||
|
||||
// Expose a REST API to interact with the agent to ask it things
|
||||
|
||||
//todoTimer := time.NewTicker(a.options.periodicRuns)
|
||||
timer := time.NewTimer(a.options.periodicRuns)
|
||||
for {
|
||||
xlog.Debug("Agent is waiting for a job", "agent", a.Character.Name)
|
||||
select {
|
||||
case job := <-a.jobQueue:
|
||||
a.loop(timer, job)
|
||||
case <-a.context.Done():
|
||||
// Agent has been canceled, return error
|
||||
xlog.Warn("Agent has been canceled", "agent", a.Character.Name)
|
||||
return ErrContextCanceled
|
||||
case <-timer.C:
|
||||
a.periodicallyRun(timer)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (a *Agent) loop(timer *time.Timer, job *Job) {
|
||||
// Remember always to reset the timer - if we don't the agent will stop..
|
||||
defer timer.Reset(a.options.periodicRuns)
|
||||
// Consume the job and generate a response
|
||||
// TODO: Give a short-term memory to the agent
|
||||
// stop and drain the timer
|
||||
if !timer.Stop() {
|
||||
<-timer.C
|
||||
}
|
||||
xlog.Debug("Agent is consuming a job", "agent", a.Character.Name, "job", job)
|
||||
a.StopAction()
|
||||
a.consumeJob(job, UserRole)
|
||||
}
|
||||
Reference in New Issue
Block a user