fix: do not track an internal currentConversation (#91)
It is prone to races, and does not really track all conversations for each job Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
committed by
GitHub
parent
b09749dddb
commit
53c1554d55
@@ -174,7 +174,7 @@ func (a *Agent) generateParameters(ctx context.Context, pickTemplate string, act
|
||||
)
|
||||
}
|
||||
|
||||
func (a *Agent) handlePlanning(ctx context.Context, job *types.Job, chosenAction types.Action, actionParams types.ActionParams, reasoning string, pickTemplate string) error {
|
||||
func (a *Agent) handlePlanning(ctx context.Context, job *types.Job, chosenAction types.Action, actionParams types.ActionParams, reasoning string, pickTemplate string, conv Messages) error {
|
||||
// Planning: run all the actions in sequence
|
||||
if !chosenAction.Definition().Name.Is(action.PlanActionName) {
|
||||
xlog.Debug("no plan action")
|
||||
@@ -221,7 +221,7 @@ func (a *Agent) handlePlanning(ctx context.Context, job *types.Job, chosenAction
|
||||
subTaskAction := a.availableActions().Find(subtask.Action)
|
||||
subTaskReasoning := fmt.Sprintf("%s, overall goal is: %s", subtask.Reasoning, planResult.Goal)
|
||||
|
||||
params, err := a.generateParameters(ctx, pickTemplate, subTaskAction, a.currentConversation, subTaskReasoning)
|
||||
params, err := a.generateParameters(ctx, pickTemplate, subTaskAction, conv, subTaskReasoning)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error generating action's parameters: %w", err)
|
||||
|
||||
@@ -245,7 +245,7 @@ func (a *Agent) handlePlanning(ctx context.Context, job *types.Job, chosenAction
|
||||
Result: "stopped by callback",
|
||||
},
|
||||
})
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
job.Result.Finish(nil)
|
||||
break
|
||||
}
|
||||
@@ -267,7 +267,7 @@ func (a *Agent) handlePlanning(ctx context.Context, job *types.Job, chosenAction
|
||||
job.Result.SetResult(stateResult)
|
||||
job.CallbackWithResult(stateResult)
|
||||
xlog.Debug("[subtask] Action executed", "agent", a.Character.Name, "action", subTaskAction.Definition().Name, "result", result)
|
||||
a.addFunctionResultToConversation(subTaskAction, actionParams, result)
|
||||
conv = a.addFunctionResultToConversation(subTaskAction, actionParams, result, conv)
|
||||
}
|
||||
|
||||
return nil
|
||||
|
||||
@@ -34,7 +34,6 @@ type Agent struct {
|
||||
currentState *action.AgentInternalState
|
||||
nextAction types.Action
|
||||
nextActionParams *types.ActionParams
|
||||
currentConversation Messages
|
||||
selfEvaluationInProgress bool
|
||||
pause bool
|
||||
|
||||
@@ -149,18 +148,6 @@ func (a *Agent) Ask(opts ...types.JobOption) *types.JobResult {
|
||||
return j.Result.WaitResult()
|
||||
}
|
||||
|
||||
func (a *Agent) CurrentConversation() []openai.ChatCompletionMessage {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
return a.currentConversation
|
||||
}
|
||||
|
||||
func (a *Agent) SetConversation(conv []openai.ChatCompletionMessage) {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
a.currentConversation = conv
|
||||
}
|
||||
|
||||
func (a *Agent) askLLM(ctx context.Context, conversation []openai.ChatCompletionMessage) (openai.ChatCompletionMessage, error) {
|
||||
resp, err := a.client.CreateChatCompletion(ctx,
|
||||
openai.ChatCompletionRequest{
|
||||
@@ -179,20 +166,6 @@ func (a *Agent) askLLM(ctx context.Context, conversation []openai.ChatCompletion
|
||||
return resp.Choices[0].Message, nil
|
||||
}
|
||||
|
||||
func (a *Agent) ResetConversation() {
|
||||
a.Lock()
|
||||
defer a.Unlock()
|
||||
|
||||
xlog.Info("Resetting conversation", "agent", a.Character.Name)
|
||||
|
||||
// store into memory the conversation before pruning it
|
||||
// TODO: Shall we summarize the conversation into a bullet list of highlights
|
||||
// using the LLM instead?
|
||||
a.saveCurrentConversation()
|
||||
|
||||
a.currentConversation = []openai.ChatCompletionMessage{}
|
||||
}
|
||||
|
||||
var ErrContextCanceled = fmt.Errorf("context canceled")
|
||||
|
||||
func (a *Agent) Stop() {
|
||||
@@ -261,7 +234,7 @@ func (a *Agent) runAction(chosenAction types.Action, params types.ActionParams)
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (a *Agent) processPrompts() {
|
||||
func (a *Agent) processPrompts(conversation Messages) Messages {
|
||||
//if job.Image != "" {
|
||||
// TODO: Use llava to explain the image content
|
||||
//}
|
||||
@@ -276,25 +249,27 @@ func (a *Agent) processPrompts() {
|
||||
xlog.Debug("Prompt is empty, skipping", "agent", a.Character.Name)
|
||||
continue
|
||||
}
|
||||
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
if !conversation.Exist(a.options.systemPrompt) {
|
||||
conversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: prompt.Role(),
|
||||
Content: message,
|
||||
}}, a.currentConversation...)
|
||||
}}, conversation...)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: move to a Promptblock?
|
||||
if a.options.systemPrompt != "" {
|
||||
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
if !conversation.Exist(a.options.systemPrompt) {
|
||||
conversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "system",
|
||||
Content: a.options.systemPrompt,
|
||||
}}, a.currentConversation...)
|
||||
}}, conversation...)
|
||||
}
|
||||
}
|
||||
|
||||
return conversation
|
||||
}
|
||||
|
||||
func (a *Agent) describeImage(ctx context.Context, model, imageURL string) (string, error) {
|
||||
@@ -349,90 +324,43 @@ func extractImageContent(message openai.ChatCompletionMessage) (imageURL, text s
|
||||
return
|
||||
}
|
||||
|
||||
func (a *Agent) processUserInputs(job *types.Job, role string) {
|
||||
|
||||
noNewMessage := job.Text == "" && job.Image == ""
|
||||
onlyText := job.Text != "" && job.Image == ""
|
||||
func (a *Agent) processUserInputs(job *types.Job, role string, conv Messages) Messages {
|
||||
|
||||
// walk conversation history, and check if last message from user contains image.
|
||||
// If it does, we need to describe the image first with a model that supports image understanding (if the current model doesn't support it)
|
||||
// and add it to the conversation context
|
||||
if a.options.SeparatedMultimodalModel() && noNewMessage {
|
||||
lastUserMessage := a.currentConversation.GetLatestUserMessage()
|
||||
if lastUserMessage != nil && a.currentConversation.IsLastMessageFromRole(UserRole) {
|
||||
imageURL, text, err := extractImageContent(*lastUserMessage)
|
||||
if err == nil {
|
||||
// We have an image, we need to describe it first
|
||||
// and add it to the conversation context
|
||||
imageDescription, err := a.describeImage(a.context.Context, a.options.LLMAPI.MultimodalModel, imageURL)
|
||||
if err != nil {
|
||||
xlog.Error("Error describing image", "error", err)
|
||||
} else {
|
||||
// We replace the user message with the image description
|
||||
// and add the user text to the conversation
|
||||
explainerMessage := openai.ChatCompletionMessage{
|
||||
Role: "system",
|
||||
Content: fmt.Sprintf("The user shared an image which can be described as: %s", imageDescription),
|
||||
}
|
||||
|
||||
// remove lastUserMessage from the conversation
|
||||
a.currentConversation = a.currentConversation.RemoveLastUserMessage()
|
||||
a.currentConversation = append(a.currentConversation, explainerMessage)
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
Content: text,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !a.options.SeparatedMultimodalModel() {
|
||||
return conv
|
||||
}
|
||||
|
||||
if onlyText {
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
Content: job.Text,
|
||||
})
|
||||
}
|
||||
|
||||
if job.Image != "" {
|
||||
// If an image is present with the text
|
||||
// we have two cases: if the model supports both images and text, we can send both
|
||||
// if the model supports only text, we can send the text only and we need to describe the image first with a model that support image understanding and add it to the conversation context
|
||||
if a.options.SeparatedMultimodalModel() {
|
||||
// We need to describe the image first
|
||||
imageDescription, err := a.describeImage(a.context.Context, a.options.LLMAPI.Model, job.Image)
|
||||
lastUserMessage := conv.GetLatestUserMessage()
|
||||
if lastUserMessage != nil && conv.IsLastMessageFromRole(UserRole) {
|
||||
imageURL, text, err := extractImageContent(*lastUserMessage)
|
||||
if err == nil {
|
||||
// We have an image, we need to describe it first
|
||||
// and add it to the conversation context
|
||||
imageDescription, err := a.describeImage(a.context.Context, a.options.LLMAPI.MultimodalModel, imageURL)
|
||||
if err != nil {
|
||||
xlog.Error("Error describing image", "error", err)
|
||||
} else {
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
// We replace the user message with the image description
|
||||
// and add the user text to the conversation
|
||||
explainerMessage := openai.ChatCompletionMessage{
|
||||
Role: "system",
|
||||
Content: fmt.Sprintf("The user shared an image which can be described as: %s", imageDescription),
|
||||
})
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
}
|
||||
|
||||
// remove lastUserMessage from the conversation
|
||||
conv = conv.RemoveLastUserMessage()
|
||||
conv = append(conv, explainerMessage)
|
||||
conv = append(conv, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
Content: job.Text,
|
||||
Content: text,
|
||||
})
|
||||
}
|
||||
} else {
|
||||
// Just append to the message both the image and the text
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
MultiContent: []openai.ChatMessagePart{
|
||||
{
|
||||
Type: openai.ChatMessagePartTypeText,
|
||||
Text: job.Text,
|
||||
},
|
||||
{
|
||||
Type: openai.ChatMessagePartTypeImageURL,
|
||||
ImageURL: &openai.ChatMessageImageURL{
|
||||
URL: job.Image,
|
||||
},
|
||||
},
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return conv
|
||||
}
|
||||
|
||||
func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
@@ -449,14 +377,13 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
// We are self evaluating if we consume the job as a system role
|
||||
selfEvaluation := role == SystemRole
|
||||
|
||||
conv := job.ConversationHistory
|
||||
|
||||
a.Lock()
|
||||
// Set the action context
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
a.actionContext = types.NewActionContext(ctx, cancel)
|
||||
a.selfEvaluationInProgress = selfEvaluation
|
||||
if len(job.ConversationHistory) != 0 {
|
||||
a.currentConversation = job.ConversationHistory
|
||||
}
|
||||
a.Unlock()
|
||||
|
||||
defer func() {
|
||||
@@ -476,11 +403,11 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
}()
|
||||
}
|
||||
|
||||
a.processPrompts()
|
||||
a.processUserInputs(job, role)
|
||||
conv = a.processPrompts(conv)
|
||||
conv = a.processUserInputs(job, role, conv)
|
||||
|
||||
// RAG
|
||||
a.knowledgeBaseLookup()
|
||||
a.knowledgeBaseLookup(conv)
|
||||
|
||||
var pickTemplate string
|
||||
var reEvaluationTemplate string
|
||||
@@ -509,7 +436,7 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
a.nextAction = nil
|
||||
} else {
|
||||
var err error
|
||||
chosenAction, actionParams, reasoning, err = a.pickAction(ctx, pickTemplate, a.currentConversation)
|
||||
chosenAction, actionParams, reasoning, err = a.pickAction(ctx, pickTemplate, conv)
|
||||
if err != nil {
|
||||
xlog.Error("Error picking action", "error", err)
|
||||
job.Result.Finish(err)
|
||||
@@ -525,12 +452,12 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
//job.Result.Finish(fmt.Errorf("no action to do"))\
|
||||
xlog.Info("No action to do, just reply", "agent", a.Character.Name, "reasoning", reasoning)
|
||||
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
conv = append(conv, openai.ChatCompletionMessage{
|
||||
Role: "assistant",
|
||||
Content: reasoning,
|
||||
})
|
||||
job.Result.Conversation = a.currentConversation
|
||||
a.saveCurrentConversation()
|
||||
job.Result.Conversation = conv
|
||||
a.saveCurrentConversation(conv)
|
||||
job.Result.SetResponse(reasoning)
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
@@ -550,7 +477,7 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
"reasoning", reasoning,
|
||||
)
|
||||
|
||||
params, err := a.generateParameters(ctx, pickTemplate, chosenAction, a.currentConversation, reasoning)
|
||||
params, err := a.generateParameters(ctx, pickTemplate, chosenAction, conv, reasoning)
|
||||
if err != nil {
|
||||
job.Result.Finish(fmt.Errorf("error generating action's parameters: %w", err))
|
||||
return
|
||||
@@ -572,7 +499,7 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
return
|
||||
}
|
||||
|
||||
if err := a.handlePlanning(ctx, job, chosenAction, actionParams, reasoning, pickTemplate); err != nil {
|
||||
if err := a.handlePlanning(ctx, job, chosenAction, actionParams, reasoning, pickTemplate, conv); err != nil {
|
||||
job.Result.Finish(fmt.Errorf("error running action: %w", err))
|
||||
return
|
||||
}
|
||||
@@ -590,7 +517,7 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
Reasoning: reasoning,
|
||||
},
|
||||
ActionResult: types.ActionResult{Result: "stopped by callback"}})
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
@@ -604,7 +531,7 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
return
|
||||
}
|
||||
|
||||
a.currentConversation = []openai.ChatCompletionMessage{
|
||||
conv = []openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: message.Message,
|
||||
@@ -616,7 +543,7 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
Content: message.Message,
|
||||
}
|
||||
}()
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
job.Result.SetResponse("decided to initiate a new conversation")
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
@@ -647,17 +574,17 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
job.CallbackWithResult(stateResult)
|
||||
xlog.Debug("Action executed", "agent", a.Character.Name, "action", chosenAction.Definition().Name, "result", result)
|
||||
|
||||
a.addFunctionResultToConversation(chosenAction, actionParams, result)
|
||||
conv = a.addFunctionResultToConversation(chosenAction, actionParams, result, conv)
|
||||
}
|
||||
|
||||
//a.currentConversation = append(a.currentConversation, messages...)
|
||||
//a.currentConversation = messages
|
||||
//conv = append(conv, messages...)
|
||||
//conv = messages
|
||||
|
||||
// given the result, we can now ask OpenAI to complete the conversation or
|
||||
// to continue using another tool given the result
|
||||
followingAction, followingParams, reasoning, err := a.pickAction(ctx, reEvaluationTemplate, a.currentConversation)
|
||||
followingAction, followingParams, reasoning, err := a.pickAction(ctx, reEvaluationTemplate, conv)
|
||||
if err != nil {
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
job.Result.Finish(fmt.Errorf("error picking action: %w", err))
|
||||
return
|
||||
}
|
||||
@@ -673,7 +600,6 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
a.currentReasoning = reasoning
|
||||
a.nextAction = followingAction
|
||||
a.nextActionParams = &followingParams
|
||||
job.Text = ""
|
||||
a.consumeJob(job, role)
|
||||
return
|
||||
} else if followingAction == nil {
|
||||
@@ -687,17 +613,17 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
Content: reasoning,
|
||||
}
|
||||
|
||||
a.currentConversation = append(a.currentConversation, msg)
|
||||
a.saveCurrentConversation()
|
||||
conv = append(conv, msg)
|
||||
a.saveCurrentConversation(conv)
|
||||
job.Result.SetResponse(msg.Content)
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
|
||||
// At this point can only be a reply action
|
||||
xlog.Info("Computing reply", "agent", a.Character.Name)
|
||||
@@ -706,7 +632,7 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
replyResponse := action.ReplyResponse{}
|
||||
|
||||
if err := actionParams.Unmarshal(&replyResponse); err != nil {
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
|
||||
return
|
||||
}
|
||||
@@ -730,17 +656,17 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
if a.options.enableHUD {
|
||||
prompt, err := renderTemplate(hudTemplate, a.prepareHUD(), a.availableActions(), reasoning)
|
||||
if err != nil {
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
job.Result.Finish(fmt.Errorf("error renderTemplate: %w", err))
|
||||
return
|
||||
}
|
||||
if !a.currentConversation.Exist(prompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
if !Messages(conv).Exist(prompt) {
|
||||
conv = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "system",
|
||||
Content: prompt,
|
||||
},
|
||||
}, a.currentConversation...)
|
||||
}, conv...)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -748,7 +674,7 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
// resp, err := a.client.CreateChatCompletion(ctx,
|
||||
// openai.ChatCompletionRequest{
|
||||
// Model: a.options.LLMAPI.Model,
|
||||
// Messages: append(a.currentConversation,
|
||||
// Messages: append(conv,
|
||||
// openai.ChatCompletionMessage{
|
||||
// Role: "system",
|
||||
// Content: "Assistant thought: " + replyResponse.Message,
|
||||
@@ -765,19 +691,19 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
Content: replyResponse.Message,
|
||||
}
|
||||
|
||||
a.currentConversation = append(a.currentConversation, msg)
|
||||
job.Result.Conversation = a.currentConversation
|
||||
conv = append(conv, msg)
|
||||
job.Result.Conversation = conv
|
||||
job.Result.SetResponse(msg.Content)
|
||||
a.saveCurrentConversation()
|
||||
a.saveCurrentConversation(conv)
|
||||
job.Result.Finish(nil)
|
||||
return
|
||||
}
|
||||
|
||||
xlog.Info("Reasoning, ask LLM for a reply", "agent", a.Character.Name)
|
||||
xlog.Debug("Conversation", "conversation", fmt.Sprintf("%+v", a.currentConversation))
|
||||
msg, err := a.askLLM(ctx, a.currentConversation)
|
||||
xlog.Debug("Conversation", "conversation", fmt.Sprintf("%+v", conv))
|
||||
msg, err := a.askLLM(ctx, conv)
|
||||
if err != nil {
|
||||
job.Result.Conversation = a.currentConversation
|
||||
job.Result.Conversation = conv
|
||||
job.Result.Finish(err)
|
||||
xlog.Error("Error asking LLM for a reply", "error", err)
|
||||
return
|
||||
@@ -793,17 +719,17 @@ func (a *Agent) consumeJob(job *types.Job, role string) {
|
||||
}
|
||||
}
|
||||
|
||||
a.currentConversation = append(a.currentConversation, msg)
|
||||
conv = append(conv, msg)
|
||||
job.Result.SetResponse(msg.Content)
|
||||
xlog.Info("Response from LLM", "response", msg.Content, "agent", a.Character.Name)
|
||||
job.Result.Conversation = a.currentConversation
|
||||
a.saveCurrentConversation()
|
||||
job.Result.Conversation = conv
|
||||
a.saveCurrentConversation(conv)
|
||||
job.Result.Finish(nil)
|
||||
}
|
||||
|
||||
func (a *Agent) addFunctionResultToConversation(chosenAction types.Action, actionParams types.ActionParams, result types.ActionResult) {
|
||||
func (a *Agent) addFunctionResultToConversation(chosenAction types.Action, actionParams types.ActionParams, result types.ActionResult, conv Messages) Messages {
|
||||
// calling the function
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
conv = append(conv, openai.ChatCompletionMessage{
|
||||
Role: "assistant",
|
||||
ToolCalls: []openai.ToolCall{
|
||||
{
|
||||
@@ -817,12 +743,14 @@ func (a *Agent) addFunctionResultToConversation(chosenAction types.Action, actio
|
||||
})
|
||||
|
||||
// result of calling the function
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
conv = append(conv, openai.ChatCompletionMessage{
|
||||
Role: openai.ChatMessageRoleTool,
|
||||
Content: result.Result,
|
||||
Name: chosenAction.Definition().Name.String(),
|
||||
ToolCallID: chosenAction.Definition().Name.String(),
|
||||
})
|
||||
|
||||
return conv
|
||||
}
|
||||
|
||||
// This is running in the background.
|
||||
@@ -839,9 +767,7 @@ func (a *Agent) periodicallyRun(timer *time.Timer) {
|
||||
// This would be a special action that would be picked up by the agent
|
||||
// and would be used to contact the user.
|
||||
|
||||
xlog.Info("START -- Periodically run is starting")
|
||||
|
||||
// if len(a.CurrentConversation()) != 0 {
|
||||
// if len(conv()) != 0 {
|
||||
// // Here the LLM could decide to store some part of the conversation too in the memory
|
||||
// evaluateMemory := NewJob(
|
||||
// WithText(
|
||||
@@ -856,10 +782,9 @@ func (a *Agent) periodicallyRun(timer *time.Timer) {
|
||||
// }
|
||||
|
||||
if !a.options.standaloneJob {
|
||||
a.ResetConversation()
|
||||
|
||||
return
|
||||
}
|
||||
xlog.Info("Periodically running", "agent", a.Character.Name)
|
||||
|
||||
// Here we go in a loop of
|
||||
// - asking the agent to do something
|
||||
@@ -873,9 +798,8 @@ func (a *Agent) periodicallyRun(timer *time.Timer) {
|
||||
types.WithResultCallback(a.options.resultCallback),
|
||||
)
|
||||
a.consumeJob(whatNext, SystemRole)
|
||||
a.ResetConversation()
|
||||
|
||||
xlog.Info("STOP -- Periodically run is done")
|
||||
xlog.Info("STOP -- Periodically run is done", "agent", a.Character.Name)
|
||||
|
||||
// Save results from state
|
||||
|
||||
|
||||
@@ -10,9 +10,9 @@ import (
|
||||
"github.com/sashabaranov/go-openai"
|
||||
)
|
||||
|
||||
func (a *Agent) knowledgeBaseLookup() {
|
||||
func (a *Agent) knowledgeBaseLookup(conv Messages) {
|
||||
if (!a.options.enableKB && !a.options.enableLongTermMemory && !a.options.enableSummaryMemory) ||
|
||||
len(a.currentConversation) <= 0 {
|
||||
len(conv) <= 0 {
|
||||
xlog.Debug("[Knowledge Base Lookup] Disabled, skipping", "agent", a.Character.Name)
|
||||
return
|
||||
}
|
||||
@@ -20,9 +20,9 @@ func (a *Agent) knowledgeBaseLookup() {
|
||||
// Walk conversation from bottom to top, and find the first message of the user
|
||||
// to use it as a query to the KB
|
||||
var userMessage string
|
||||
userMessage = a.currentConversation.GetLatestUserMessage().Content
|
||||
userMessage = conv.GetLatestUserMessage().Content
|
||||
|
||||
xlog.Info("[Knowledge Base Lookup] Last user message", "agent", a.Character.Name, "message", userMessage, "lastMessage", a.currentConversation.GetLatestUserMessage())
|
||||
xlog.Info("[Knowledge Base Lookup] Last user message", "agent", a.Character.Name, "message", userMessage, "lastMessage", conv.GetLatestUserMessage())
|
||||
|
||||
if userMessage == "" {
|
||||
xlog.Info("[Knowledge Base Lookup] No user message found in conversation", "agent", a.Character.Name)
|
||||
@@ -45,17 +45,17 @@ func (a *Agent) knowledgeBaseLookup() {
|
||||
}
|
||||
xlog.Info("[Knowledge Base Lookup] Found similar strings in KB", "agent", a.Character.Name, "results", formatResults)
|
||||
|
||||
// a.currentConversation = append(a.currentConversation,
|
||||
// conv = append(conv,
|
||||
// openai.ChatCompletionMessage{
|
||||
// Role: "system",
|
||||
// Content: fmt.Sprintf("Given the user input you have the following in memory:\n%s", formatResults),
|
||||
// },
|
||||
// )
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
conv = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "system",
|
||||
Content: fmt.Sprintf("Given the user input you have the following in memory:\n%s", formatResults),
|
||||
}}, a.currentConversation...)
|
||||
}}, conv...)
|
||||
}
|
||||
|
||||
func (a *Agent) saveConversation(m Messages, prefix string) error {
|
||||
@@ -71,9 +71,9 @@ func (a *Agent) saveConversation(m Messages, prefix string) error {
|
||||
return m.Save(filepath.Join(a.options.conversationsPath, fileName))
|
||||
}
|
||||
|
||||
func (a *Agent) saveCurrentConversation() {
|
||||
func (a *Agent) saveCurrentConversation(conv Messages) {
|
||||
|
||||
if err := a.saveConversation(a.currentConversation, ""); err != nil {
|
||||
if err := a.saveConversation(conv, ""); err != nil {
|
||||
xlog.Error("Error saving conversation", "error", err)
|
||||
}
|
||||
|
||||
@@ -82,12 +82,12 @@ func (a *Agent) saveCurrentConversation() {
|
||||
return
|
||||
}
|
||||
|
||||
xlog.Info("Saving conversation", "agent", a.Character.Name, "conversation size", len(a.currentConversation))
|
||||
xlog.Info("Saving conversation", "agent", a.Character.Name, "conversation size", len(conv))
|
||||
|
||||
if a.options.enableSummaryMemory && len(a.currentConversation) > 0 {
|
||||
if a.options.enableSummaryMemory && len(conv) > 0 {
|
||||
msg, err := a.askLLM(a.context.Context, []openai.ChatCompletionMessage{{
|
||||
Role: "user",
|
||||
Content: "Summarize the conversation below, keep the highlights as a bullet list:\n" + Messages(a.currentConversation).String(),
|
||||
Content: "Summarize the conversation below, keep the highlights as a bullet list:\n" + Messages(conv).String(),
|
||||
}})
|
||||
if err != nil {
|
||||
xlog.Error("Error summarizing conversation", "error", err)
|
||||
@@ -97,7 +97,7 @@ func (a *Agent) saveCurrentConversation() {
|
||||
xlog.Error("Error storing into memory", "error", err)
|
||||
}
|
||||
} else {
|
||||
for _, message := range a.currentConversation {
|
||||
for _, message := range conv {
|
||||
if message.Role == "user" {
|
||||
if err := a.options.ragdb.Store(message.Content); err != nil {
|
||||
xlog.Error("Error storing into memory", "error", err)
|
||||
|
||||
@@ -13,8 +13,6 @@ type Job struct {
|
||||
// The job is a request to the agent to do something
|
||||
// It can be a question, a command, or a request to do something
|
||||
// The agent will try to do it, and return a response
|
||||
Text string
|
||||
Image string // base64 encoded image
|
||||
Result *JobResult
|
||||
reasoningCallback func(ActionCurrentState) bool
|
||||
resultCallback func(ActionState)
|
||||
@@ -83,15 +81,30 @@ func (j *Job) CallbackWithResult(stateResult ActionState) {
|
||||
j.resultCallback(stateResult)
|
||||
}
|
||||
|
||||
func WithImage(image string) JobOption {
|
||||
func WithTextImage(text, image string) JobOption {
|
||||
return func(j *Job) {
|
||||
j.Image = image
|
||||
j.ConversationHistory = append(j.ConversationHistory, openai.ChatCompletionMessage{
|
||||
Role: "user",
|
||||
MultiContent: []openai.ChatMessagePart{
|
||||
{
|
||||
Type: openai.ChatMessagePartTypeText,
|
||||
Text: text,
|
||||
},
|
||||
{
|
||||
Type: openai.ChatMessagePartTypeImageURL,
|
||||
ImageURL: &openai.ChatMessageImageURL{URL: image},
|
||||
},
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func WithText(text string) JobOption {
|
||||
return func(j *Job) {
|
||||
j.Text = text
|
||||
j.ConversationHistory = append(j.ConversationHistory, openai.ChatCompletionMessage{
|
||||
Role: "user",
|
||||
Content: text,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -216,7 +216,6 @@ func (t *Slack) handleChannelMessage(
|
||||
}
|
||||
|
||||
agentOptions := []types.JobOption{
|
||||
types.WithText(message),
|
||||
types.WithUUID(ev.ThreadTimeStamp),
|
||||
}
|
||||
|
||||
@@ -228,8 +227,10 @@ func (t *Slack) handleChannelMessage(
|
||||
if err != nil {
|
||||
xlog.Error(fmt.Sprintf("Error encoding image to base64: %v", err))
|
||||
} else {
|
||||
agentOptions = append(agentOptions, types.WithImage(fmt.Sprintf("data:%s;base64,%s", mimeType, imgBase64)))
|
||||
agentOptions = append(agentOptions, types.WithTextImage(message, fmt.Sprintf("data:%s;base64,%s", mimeType, imgBase64)))
|
||||
}
|
||||
} else {
|
||||
agentOptions = append(agentOptions, types.WithText(message))
|
||||
}
|
||||
|
||||
res := a.Ask(
|
||||
|
||||
Reference in New Issue
Block a user