Files
LocalAGI/agent/actions.go
2024-03-31 16:51:38 +02:00

344 lines
8.1 KiB
Go

package agent
import (
"bytes"
"context"
"encoding/json"
"fmt"
"html/template"
"time"
//"github.com/mudler/local-agent-framework/llm"
"github.com/sashabaranov/go-openai"
)
type ActionContext struct {
context.Context
cancelFunc context.CancelFunc
}
type ActionParams map[string]string
func (ap ActionParams) Read(s string) error {
err := json.Unmarshal([]byte(s), &ap)
return err
}
func (ap ActionParams) String() string {
b, _ := json.Marshal(ap)
return string(b)
}
type ActionDefinition openai.FunctionDefinition
func (a ActionDefinition) FD() openai.FunctionDefinition {
return openai.FunctionDefinition(a)
}
// Actions is something the agent can do
type Action interface {
ID() string
Description() string
Run(ActionParams) (string, error)
Definition() ActionDefinition
}
var ErrContextCanceled = fmt.Errorf("context canceled")
func (a *Agent) Stop() {
a.Lock()
defer a.Unlock()
a.context.cancelFunc()
}
func (a *Agent) Run() error {
// The agent run does two things:
// picks up requests from a queue
// and generates a response/perform actions
// It is also preemptive.
// That is, it can interrupt the current action
// if another one comes in.
// If there is no action, periodically evaluate if it has to do something on its own.
// Expose a REST API to interact with the agent to ask it things
fmt.Println("Agent is running")
clearConvTimer := time.NewTicker(1 * time.Minute)
for {
fmt.Println("Agent loop")
select {
case job := <-a.jobQueue:
fmt.Println("job from the queue")
// Consume the job and generate a response
// TODO: Give a short-term memory to the agent
a.consumeJob(job)
case <-a.context.Done():
fmt.Println("Context canceled, agent is stopping...")
// Agent has been canceled, return error
return ErrContextCanceled
case <-clearConvTimer.C:
fmt.Println("Removing chat history...")
// TODO: decide to do something on its own with the conversation result
// before clearing it out
// Clear the conversation
a.currentConversation = []openai.ChatCompletionMessage{}
}
}
}
// StopAction stops the current action
// if any. Can be called before adding a new job.
func (a *Agent) StopAction() {
a.Lock()
defer a.Unlock()
if a.actionContext != nil {
a.actionContext.cancelFunc()
}
}
func (a *Agent) decision(ctx context.Context, conversation []openai.ChatCompletionMessage, tools []openai.Tool, toolchoice any) (ActionParams, error) {
decision := openai.ChatCompletionRequest{
Model: a.options.LLMAPI.Model,
Messages: conversation,
Tools: tools,
ToolChoice: toolchoice,
}
resp, err := a.client.CreateChatCompletion(ctx, decision)
if err != nil || len(resp.Choices) != 1 {
fmt.Println("no choices", err)
return nil, err
}
msg := resp.Choices[0].Message
if len(msg.ToolCalls) != 1 {
return nil, fmt.Errorf("len(toolcalls): %v", len(msg.ToolCalls))
}
params := ActionParams{}
if err := params.Read(msg.ToolCalls[0].Function.Arguments); err != nil {
fmt.Println("can't read params", err)
return nil, err
}
return params, nil
}
type Actions []Action
func (a Actions) ToTools() []openai.Tool {
tools := []openai.Tool{}
for _, action := range a {
tools = append(tools, openai.Tool{
Type: openai.ToolTypeFunction,
Function: action.Definition().FD(),
})
}
return tools
}
func (a *Agent) generateParameters(ctx context.Context, action Action, conversation []openai.ChatCompletionMessage) (ActionParams, error) {
return a.decision(ctx, conversation, a.options.actions.ToTools(), action.ID())
}
const pickActionTemplate = `You can take any of the following tools:
{{range .Actions}}{{.ID}}: {{.Description}}{{end}}
or none. Given the text below, decide which action to take and explain the reasoning behind it. For answering without picking a choice, reply with 'none'.
{{range .Messages}}{{.Content}}{{end}}
`
func (a *Agent) pickAction(ctx context.Context, messages []openai.ChatCompletionMessage) (Action, error) {
actionChoice := struct {
Intent string `json:"tool"`
Reasoning string `json:"reasoning"`
}{}
prompt := bytes.NewBuffer([]byte{})
tmpl, err := template.New("pickAction").Parse(pickActionTemplate)
if err != nil {
return nil, err
}
err = tmpl.Execute(prompt, struct {
Actions []Action
Messages []openai.ChatCompletionMessage
}{
Actions: a.options.actions,
Messages: messages,
})
if err != nil {
return nil, err
}
fmt.Println(prompt.String())
actionsID := []string{}
for _, m := range a.options.actions {
actionsID = append(actionsID, m.ID())
}
intentionsTools := NewIntention(actionsID...)
conversation := []openai.ChatCompletionMessage{
{
Role: "user",
Content: prompt.String(),
},
}
params, err := a.decision(ctx, conversation, Actions{intentionsTools}.ToTools(), intentionsTools.ID())
if err != nil {
fmt.Println("failed decision", err)
return nil, err
}
dat, err := json.Marshal(params)
if err != nil {
return nil, err
}
err = json.Unmarshal(dat, &actionChoice)
if err != nil {
return nil, err
}
fmt.Printf("Action choice: %v\n", actionChoice)
if actionChoice.Intent == "" || actionChoice.Intent == "none" {
return nil, fmt.Errorf("no intent detected")
}
// Find the action
var action Action
for _, a := range a.options.actions {
if a.ID() == actionChoice.Intent {
action = a
break
}
}
if action == nil {
fmt.Println("No action found for intent: ", actionChoice.Intent)
return nil, fmt.Errorf("No action found for intent:" + actionChoice.Intent)
}
return action, nil
}
func (a *Agent) consumeJob(job *Job) {
// Consume the job and generate a response
a.Lock()
// Set the action context
ctx, cancel := context.WithCancel(context.Background())
a.actionContext = &ActionContext{
Context: ctx,
cancelFunc: cancel,
}
a.Unlock()
if job.Image != "" {
// TODO: Use llava to explain the image content
}
if job.Text == "" {
fmt.Println("no text!")
return
}
messages := a.currentConversation
if job.Text != "" {
messages = append(messages, openai.ChatCompletionMessage{
Role: "user",
Content: job.Text,
})
}
chosenAction, err := a.pickAction(ctx, messages)
if err != nil {
fmt.Printf("error picking action: %v\n", err)
return
}
params, err := a.generateParameters(ctx, chosenAction, messages)
if err != nil {
fmt.Printf("error generating parameters: %v\n", err)
return
}
var result string
for _, action := range a.options.actions {
fmt.Println("Checking action: ", action.ID(), chosenAction.ID())
if action.ID() == chosenAction.ID() {
fmt.Printf("Running action: %v\n", action.ID())
if result, err = action.Run(params); err != nil {
fmt.Printf("error running action: %v\n", err)
return
}
}
}
fmt.Printf("Action run result: %v\n", result)
// calling the function
messages = append(messages, openai.ChatCompletionMessage{
Role: "assistant",
FunctionCall: &openai.FunctionCall{
Name: chosenAction.ID(),
Arguments: params.String(),
},
})
// result of calling the function
messages = append(messages, openai.ChatCompletionMessage{
Role: openai.ChatMessageRoleTool,
Content: result,
Name: chosenAction.ID(),
ToolCallID: chosenAction.ID(),
})
resp, err := a.client.CreateChatCompletion(ctx,
openai.ChatCompletionRequest{
Model: a.options.LLMAPI.Model,
Messages: messages,
// Tools: tools,
},
)
if err != nil || len(resp.Choices) != 1 {
fmt.Printf("2nd completion error: err:%v len(choices):%v\n", err,
len(resp.Choices))
return
}
// display OpenAI's response to the original question utilizing our function
msg := resp.Choices[0].Message
fmt.Printf("OpenAI answered the original request with: %v\n",
msg.Content)
messages = append(messages, msg)
a.currentConversation = append(a.currentConversation, messages...)
if len(msg.ToolCalls) != 0 {
fmt.Printf("OpenAI wants to call again functions: %v\n", msg)
// wants to call again an action (?)
job.Text = "" // Call the job with the current conversation
job.Result.SetResult(result)
a.jobQueue <- job
return
}
// perform the action (if any)
// or reply with a result
// if there is an action...
job.Result.SetResult(result)
job.Result.Finish()
}