Files
LocalAGI/agent/actions.go
Ettore Di Giacinto 658681f344 let it choose
2024-03-31 00:26:48 +01:00

273 lines
6.9 KiB
Go

package agent
import (
"context"
"encoding/json"
"fmt"
"time"
//"github.com/mudler/local-agent-framework/llm"
"github.com/mudler/local-agent-framework/llm"
"github.com/sashabaranov/go-openai"
)
type ActionContext struct {
context.Context
cancelFunc context.CancelFunc
}
type ActionParams map[string]string
func (ap ActionParams) Read(s string) error {
err := json.Unmarshal([]byte(s), &ap)
return err
}
type ActionDefinition openai.FunctionDefinition
func (a ActionDefinition) FD() openai.FunctionDefinition {
return openai.FunctionDefinition(a)
}
// Actions is something the agent can do
type Action interface {
ID() string
Description() string
Run(ActionParams) (string, error)
Definition() ActionDefinition
}
var ErrContextCanceled = fmt.Errorf("context canceled")
func (a *Agent) Stop() {
a.Lock()
defer a.Unlock()
a.context.cancelFunc()
}
func (a *Agent) Run() error {
// The agent run does two things:
// picks up requests from a queue
// and generates a response/perform actions
// It is also preemptive.
// That is, it can interrupt the current action
// if another one comes in.
// If there is no action, periodically evaluate if it has to do something on its own.
// Expose a REST API to interact with the agent to ask it things
fmt.Println("Agent is running")
clearConvTimer := time.NewTicker(1 * time.Minute)
for {
fmt.Println("Agent loop")
select {
case job := <-a.jobQueue:
fmt.Println("job from the queue")
// Consume the job and generate a response
// TODO: Give a short-term memory to the agent
a.consumeJob(job)
case <-a.context.Done():
fmt.Println("Context canceled, agent is stopping...")
// Agent has been canceled, return error
return ErrContextCanceled
case <-clearConvTimer.C:
fmt.Println("Removing chat history...")
// TODO: decide to do something on its own with the conversation result
// before clearing it out
// Clear the conversation
a.currentConversation = []openai.ChatCompletionMessage{}
}
}
}
// StopAction stops the current action
// if any. Can be called before adding a new job.
func (a *Agent) StopAction() {
a.Lock()
defer a.Unlock()
if a.actionContext != nil {
a.actionContext.cancelFunc()
}
}
func (a *Agent) consumeJob(job *Job) {
// Consume the job and generate a response
a.Lock()
// Set the action context
ctx, cancel := context.WithCancel(context.Background())
a.actionContext = &ActionContext{
Context: ctx,
cancelFunc: cancel,
}
a.Unlock()
if job.Image != "" {
// TODO: Use llava to explain the image content
}
if job.Text == "" {
fmt.Println("no text!")
return
}
actionChoice := struct {
Intent string `json:"intent"`
Reasoning string `json:"reasoning"`
}{}
action_pick := "You can take any action between: "
for _, action := range a.options.actions {
action_pick += action.ID() + ": " + action.Description() + ", "
}
action_pick += "or none."
action_pick += "Given the text below, decide which action to take and explain the reasoning behind it. For answering without picking a choice, reply with 'none'."
action_pick += "return the result as a JSON object with the 'intent' and 'reasoning' fields."
err := llm.GenerateJSON(ctx, a.client, a.options.LLMAPI.Model, action_pick, &actionChoice)
if err != nil {
fmt.Println("Error generating JSON: ", err)
return
}
fmt.Println("Action choice: ", actionChoice)
if actionChoice.Intent == "" || actionChoice.Intent == "none" {
fmt.Println("No intent detected")
return
}
// Find the action
var action Action
for _, a := range a.options.actions {
if a.ID() == actionChoice.Intent {
action = a
break
}
}
if action == nil {
fmt.Println("No action found for intent: ", actionChoice.Intent)
return
}
// Fill the action parameters
// https://github.com/sashabaranov/go-openai/blob/0925563e86c2fdc5011310aa616ba493989cfe0a/examples/completion-with-tool/main.go#L16
actions := a.options.actions
tools := []openai.Tool{}
messages := a.currentConversation
if job.Text != "" {
messages = append(messages, openai.ChatCompletionMessage{
Role: "user",
Content: job.Text,
})
}
for _, action := range actions {
tools = append(tools, openai.Tool{
Type: openai.ToolTypeFunction,
Function: action.Definition().FD(),
})
}
decision := openai.ChatCompletionRequest{
Model: a.options.LLMAPI.Model,
Messages: messages,
Tools: tools,
ToolChoice: &openai.ToolChoice{
Type: openai.ToolTypeFunction,
Function: openai.ToolFunction{Name: action.ID()},
},
}
resp, err := a.client.CreateChatCompletion(ctx, decision)
if err != nil || len(resp.Choices) != 1 {
fmt.Printf("Completion error: err:%v len(choices):%v\n", err,
len(resp.Choices))
return
}
msg := resp.Choices[0].Message
if len(msg.ToolCalls) != 1 {
fmt.Printf("Completion error: len(toolcalls): %v\n", len(msg.ToolCalls))
return
}
// simulate calling the function & responding to OpenAI
messages = append(messages, msg)
fmt.Printf("OpenAI called us back wanting to invoke our function '%v' with params '%v'\n",
msg.ToolCalls[0].Function.Name, msg.ToolCalls[0].Function.Arguments)
params := ActionParams{}
if err := params.Read(msg.ToolCalls[0].Function.Arguments); err != nil {
fmt.Printf("error unmarshalling arguments: %v\n", err)
return
}
var result string
for _, action := range actions {
fmt.Println("Checking action: ", action.ID())
fmt.Println("Checking action: ", msg.ToolCalls[0].Function.Name)
if action.ID() == msg.ToolCalls[0].Function.Name {
fmt.Printf("Running action: %v\n", action.ID())
if result, err = action.Run(params); err != nil {
fmt.Printf("error running action: %v\n", err)
return
}
}
}
fmt.Printf("Action run result: %v\n", result)
// result of calling the function
messages = append(messages, openai.ChatCompletionMessage{
Role: openai.ChatMessageRoleTool,
Content: result,
Name: msg.ToolCalls[0].Function.Name,
ToolCallID: msg.ToolCalls[0].ID,
})
resp, err = a.client.CreateChatCompletion(ctx,
openai.ChatCompletionRequest{
Model: a.options.LLMAPI.Model,
Messages: messages,
// Tools: tools,
},
)
if err != nil || len(resp.Choices) != 1 {
fmt.Printf("2nd completion error: err:%v len(choices):%v\n", err,
len(resp.Choices))
return
}
// display OpenAI's response to the original question utilizing our function
msg = resp.Choices[0].Message
fmt.Printf("OpenAI answered the original request with: %v\n",
msg.Content)
messages = append(messages, msg)
a.currentConversation = append(a.currentConversation, messages...)
if len(msg.ToolCalls) != 0 {
fmt.Printf("OpenAI wants to call again functions: %v\n", msg)
// wants to call again an action (?)
job.Text = "" // Call the job with the current conversation
job.Result.SetResult(result)
a.jobQueue <- job
return
}
// perform the action (if any)
// or reply with a result
// if there is an action...
job.Result.SetResult(result)
job.Result.Finish()
}