Files
LocalAGI/core/agent/agent.go
2025-03-27 00:13:26 +01:00

902 lines
25 KiB
Go

package agent
import (
"context"
"fmt"
"os"
"sync"
"time"
"github.com/mudler/LocalAgent/pkg/xlog"
"github.com/mudler/LocalAgent/core/action"
"github.com/mudler/LocalAgent/core/types"
"github.com/mudler/LocalAgent/pkg/llm"
"github.com/sashabaranov/go-openai"
)
const (
UserRole = "user"
AssistantRole = "assistant"
SystemRole = "system"
)
type Agent struct {
sync.Mutex
options *options
Character Character
client *openai.Client
jobQueue chan *types.Job
context *types.ActionContext
currentReasoning string
currentState *action.AgentInternalState
nextAction types.Action
nextActionParams *types.ActionParams
selfEvaluationInProgress bool
pause bool
newConversations chan openai.ChatCompletionMessage
mcpActions types.Actions
subscriberMutex sync.Mutex
newMessagesSubscribers []func(openai.ChatCompletionMessage)
}
type RAGDB interface {
Store(s string) error
Reset() error
Search(s string, similarEntries int) ([]string, error)
Count() int
}
func New(opts ...Option) (*Agent, error) {
options, err := newOptions(opts...)
if err != nil {
return nil, fmt.Errorf("failed to set options: %v", err)
}
client := llm.NewClient(options.LLMAPI.APIKey, options.LLMAPI.APIURL, options.timeout)
c := context.Background()
if options.context != nil {
c = options.context
}
ctx, cancel := context.WithCancel(c)
a := &Agent{
jobQueue: make(chan *types.Job),
options: options,
client: client,
Character: options.character,
currentState: &action.AgentInternalState{},
context: types.NewActionContext(ctx, cancel),
newMessagesSubscribers: options.newConversationsSubscribers,
}
if a.options.statefile != "" {
if _, err := os.Stat(a.options.statefile); err == nil {
if err = a.LoadState(a.options.statefile); err != nil {
return a, fmt.Errorf("failed to load state: %v", err)
}
}
}
// var programLevel = new(xlog.LevelVar) // Info by default
// h := xlog.NewTextHandler(os.Stdout, &xlog.HandlerOptions{Level: programLevel})
// xlog = xlog.New(h)
//programLevel.Set(a.options.logLevel)
if err := a.prepareIdentity(); err != nil {
return nil, fmt.Errorf("failed to prepare identity: %v", err)
}
xlog.Info("Populating actions from MCP Servers (if any)")
a.initMCPActions()
xlog.Info("Done populating actions from MCP Servers")
xlog.Info(
"Agent created",
"agent", a.Character.Name,
"character", a.Character.String(),
"state", a.State().String(),
"goal", a.options.permanentGoal,
"model", a.options.LLMAPI.Model,
)
a.startNewConversationsConsumer()
return a, nil
}
func (a *Agent) startNewConversationsConsumer() {
go func() {
for {
select {
case <-a.context.Done():
return
case msg := <-a.newConversations:
a.subscriberMutex.Lock()
subs := a.newMessagesSubscribers
a.subscriberMutex.Unlock()
for _, s := range subs {
s(msg)
}
}
}
}()
}
func (a *Agent) AddSubscriber(f func(openai.ChatCompletionMessage)) {
a.subscriberMutex.Lock()
defer a.subscriberMutex.Unlock()
a.newMessagesSubscribers = append(a.newMessagesSubscribers, f)
}
func (a *Agent) Context() context.Context {
return a.context.Context
}
// Ask is a blocking call that returns the response as soon as it's ready.
// It discards any other computation.
func (a *Agent) Ask(opts ...types.JobOption) *types.JobResult {
xlog.Debug("Agent Ask()", "agent", a.Character.Name, "model", a.options.LLMAPI.Model)
defer func() {
xlog.Debug("Agent has finished being asked", "agent", a.Character.Name)
}()
return a.Execute(types.NewJob(
append(
opts,
types.WithReasoningCallback(a.options.reasoningCallback),
types.WithResultCallback(a.options.resultCallback),
)...,
))
}
// Ask is a pre-emptive, blocking call that returns the response as soon as it's ready.
// It discards any other computation.
func (a *Agent) Execute(j *types.Job) *types.JobResult {
xlog.Debug("Agent Execute()", "agent", a.Character.Name, "model", a.options.LLMAPI.Model)
defer func() {
xlog.Debug("Agent has finished", "agent", a.Character.Name)
}()
a.Enqueue(j)
return j.Result.WaitResult()
}
func (a *Agent) Enqueue(j *types.Job) {
j.ReasoningCallback = a.options.reasoningCallback
j.ResultCallback = a.options.resultCallback
a.jobQueue <- j
}
func (a *Agent) askLLM(ctx context.Context, conversation []openai.ChatCompletionMessage) (openai.ChatCompletionMessage, error) {
resp, err := a.client.CreateChatCompletion(ctx,
openai.ChatCompletionRequest{
Model: a.options.LLMAPI.Model,
Messages: conversation,
},
)
if err != nil {
return openai.ChatCompletionMessage{}, err
}
if len(resp.Choices) != 1 {
return openai.ChatCompletionMessage{}, fmt.Errorf("no enough choices: %w", err)
}
return resp.Choices[0].Message, nil
}
var ErrContextCanceled = fmt.Errorf("context canceled")
func (a *Agent) Stop() {
a.Lock()
defer a.Unlock()
xlog.Debug("Stopping agent", "agent", a.Character.Name)
a.context.Cancel()
}
func (a *Agent) Pause() {
a.Lock()
defer a.Unlock()
a.pause = true
}
func (a *Agent) Resume() {
a.Lock()
defer a.Unlock()
a.pause = false
}
func (a *Agent) Paused() bool {
a.Lock()
defer a.Unlock()
return a.pause
}
func (a *Agent) Memory() RAGDB {
return a.options.ragdb
}
func (a *Agent) runAction(ctx context.Context, chosenAction types.Action, params types.ActionParams) (result types.ActionResult, err error) {
for _, act := range a.availableActions() {
if act.Definition().Name == chosenAction.Definition().Name {
res, err := act.Run(ctx, params)
if err != nil {
return types.ActionResult{}, fmt.Errorf("error running action: %w", err)
}
result = res
}
}
xlog.Info("Running action", "action", chosenAction.Definition().Name, "agent", a.Character.Name)
if chosenAction.Definition().Name.Is(action.StateActionName) {
// We need to store the result in the state
state := action.AgentInternalState{}
err = params.Unmarshal(&state)
if err != nil {
return types.ActionResult{}, fmt.Errorf("error unmarshalling state of the agent: %w", err)
}
// update the current state with the one we just got from the action
a.currentState = &state
// update the state file
if a.options.statefile != "" {
if err := a.SaveState(a.options.statefile); err != nil {
return types.ActionResult{}, err
}
}
}
return result, nil
}
func (a *Agent) processPrompts(conversation Messages) Messages {
//if job.Image != "" {
// TODO: Use llava to explain the image content
//}
// Add custom prompts
for _, prompt := range a.options.prompts {
message, err := prompt.Render(a)
if err != nil {
xlog.Error("Error rendering prompt", "error", err)
continue
}
if message == "" {
xlog.Debug("Prompt is empty, skipping", "agent", a.Character.Name)
continue
}
if !conversation.Exist(a.options.systemPrompt) {
conversation = append([]openai.ChatCompletionMessage{
{
Role: prompt.Role(),
Content: message,
}}, conversation...)
}
}
// TODO: move to a Promptblock?
if a.options.systemPrompt != "" {
if !conversation.Exist(a.options.systemPrompt) {
conversation = append([]openai.ChatCompletionMessage{
{
Role: "system",
Content: a.options.systemPrompt,
}}, conversation...)
}
}
return conversation
}
func (a *Agent) describeImage(ctx context.Context, model, imageURL string) (string, error) {
xlog.Debug("Describing image", "model", model, "image", imageURL)
resp, err := a.client.CreateChatCompletion(ctx,
openai.ChatCompletionRequest{
Model: model,
Messages: []openai.ChatCompletionMessage{
{
Role: "user",
MultiContent: []openai.ChatMessagePart{
{
Type: openai.ChatMessagePartTypeText,
Text: "What is in the image?",
},
{
Type: openai.ChatMessagePartTypeImageURL,
ImageURL: &openai.ChatMessageImageURL{
URL: imageURL,
},
},
},
},
}})
if err != nil {
return "", err
}
if len(resp.Choices) == 0 {
return "", fmt.Errorf("no choices")
}
xlog.Debug("Described image", "description", resp.Choices[0].Message.Content)
return resp.Choices[0].Message.Content, nil
}
func extractImageContent(message openai.ChatCompletionMessage) (imageURL, text string, e error) {
e = fmt.Errorf("no image found")
if message.MultiContent != nil {
for _, content := range message.MultiContent {
if content.Type == openai.ChatMessagePartTypeImageURL {
imageURL = content.ImageURL.URL
e = nil
}
if content.Type == openai.ChatMessagePartTypeText {
text = content.Text
e = nil
}
}
}
return
}
func (a *Agent) processUserInputs(job *types.Job, role string, conv Messages) Messages {
// walk conversation history, and check if last message from user contains image.
// If it does, we need to describe the image first with a model that supports image understanding (if the current model doesn't support it)
// and add it to the conversation context
if !a.options.SeparatedMultimodalModel() {
return conv
}
lastUserMessage := conv.GetLatestUserMessage()
if lastUserMessage != nil && conv.IsLastMessageFromRole(UserRole) {
imageURL, text, err := extractImageContent(*lastUserMessage)
if err == nil {
// We have an image, we need to describe it first
// and add it to the conversation context
imageDescription, err := a.describeImage(a.context.Context, a.options.LLMAPI.MultimodalModel, imageURL)
if err != nil {
xlog.Error("Error describing image", "error", err)
} else {
// We replace the user message with the image description
// and add the user text to the conversation
explainerMessage := openai.ChatCompletionMessage{
Role: "system",
Content: fmt.Sprintf("The user shared an image which can be described as: %s", imageDescription),
}
// remove lastUserMessage from the conversation
conv = conv.RemoveLastUserMessage()
conv = append(conv, explainerMessage)
conv = append(conv, openai.ChatCompletionMessage{
Role: role,
Content: text,
})
}
}
}
return conv
}
func (a *Agent) consumeJob(job *types.Job, role string) {
if err := job.GetContext().Err(); err != nil {
job.Result.Finish("expired"))
return
}
a.Lock()
paused := a.pause
a.Unlock()
if paused {
xlog.Info("Agent is paused, skipping job", "agent", a.Character.Name)
job.Result.Finish(fmt.Errorf("agent is paused"))
return
}
// We are self evaluating if we consume the job as a system role
selfEvaluation := role == SystemRole
conv := job.ConversationHistory
a.Lock()
a.selfEvaluationInProgress = selfEvaluation
a.Unlock()
defer job.Cancel()
if selfEvaluation {
defer func() {
a.Lock()
a.selfEvaluationInProgress = false
a.Unlock()
}()
}
conv = a.processPrompts(conv)
conv = a.processUserInputs(job, role, conv)
// RAG
a.knowledgeBaseLookup(conv)
var pickTemplate string
var reEvaluationTemplate string
if selfEvaluation {
pickTemplate = pickSelfTemplate
reEvaluationTemplate = reSelfEvalTemplate
} else {
pickTemplate = pickActionTemplate
reEvaluationTemplate = reEvalTemplate
}
// choose an action first
var chosenAction types.Action
var reasoning string
var actionParams types.ActionParams
if a.nextAction != nil {
// if we are being re-evaluated, we already have the action
// and the reasoning. Consume it here and reset it
chosenAction = a.nextAction
reasoning = a.currentReasoning
actionParams = *a.nextActionParams
a.currentReasoning = ""
a.nextActionParams = nil
a.nextAction = nil
} else {
var err error
chosenAction, actionParams, reasoning, err = a.pickAction(job.GetContext(), pickTemplate, conv)
if err != nil {
xlog.Error("Error picking action", "error", err)
job.Result.Finish(err)
return
}
}
//xlog.Debug("Picked action", "agent", a.Character.Name, "action", chosenAction.Definition().Name, "reasoning", reasoning)
if chosenAction == nil {
// If no action was picked up, the reasoning is the message returned by the assistant
// so we can consume it as if it was a reply.
//job.Result.SetResult(ActionState{ActionCurrentState{nil, nil, "No action to do, just reply"}, ""})
//job.Result.Finish(fmt.Errorf("no action to do"))\
xlog.Info("No action to do, just reply", "agent", a.Character.Name, "reasoning", reasoning)
conv = append(conv, openai.ChatCompletionMessage{
Role: "assistant",
Content: reasoning,
})
xlog.Debug("Finish job with reasoning", "reasoning", reasoning, "agent", a.Character.Name, "conversation", fmt.Sprintf("%+v", conv))
job.Result.Conversation = conv
a.saveCurrentConversation(conv)
job.Result.SetResponse(reasoning)
job.Result.Finish(nil)
return
}
if chosenAction.Definition().Name.Is(action.StopActionName) {
xlog.Info("LLM decided to stop")
job.Result.Finish(nil)
return
}
// if we force a reasoning, we need to generate the parameters
if a.options.forceReasoning || actionParams == nil {
xlog.Info("Generating parameters",
"agent", a.Character.Name,
"action", chosenAction.Definition().Name,
"reasoning", reasoning,
)
params, err := a.generateParameters(job.GetContext(), pickTemplate, chosenAction, conv, reasoning)
if err != nil {
job.Result.Finish(fmt.Errorf("error generating action's parameters: %w", err))
return
}
actionParams = params.actionParams
}
xlog.Info(
"Generated parameters",
"agent", a.Character.Name,
"action", chosenAction.Definition().Name,
"reasoning", reasoning,
"params", actionParams.String(),
)
if actionParams == nil {
job.Result.Finish(fmt.Errorf("no parameters"))
xlog.Error("No parameters", "agent", a.Character.Name)
return
}
var err error
conv, err = a.handlePlanning(job.GetContext(), job, chosenAction, actionParams, reasoning, pickTemplate, conv)
if err != nil {
job.Result.Finish(fmt.Errorf("error running action: %w", err))
return
}
if !job.Callback(types.ActionCurrentState{
Job: job,
Action: chosenAction,
Params: actionParams,
Reasoning: reasoning}) {
job.Result.SetResult(types.ActionState{
ActionCurrentState: types.ActionCurrentState{
Job: job,
Action: chosenAction,
Params: actionParams,
Reasoning: reasoning,
},
ActionResult: types.ActionResult{Result: "stopped by callback"}})
job.Result.Conversation = conv
job.Result.Finish(nil)
return
}
if selfEvaluation && a.options.initiateConversations &&
chosenAction.Definition().Name.Is(action.ConversationActionName) {
message := action.ConversationActionResponse{}
if err := actionParams.Unmarshal(&message); err != nil {
job.Result.Finish(fmt.Errorf("error unmarshalling conversation response: %w", err))
return
}
conv = []openai.ChatCompletionMessage{
{
Role: "assistant",
Content: message.Message,
},
}
go func() {
a.newConversations <- openai.ChatCompletionMessage{
Role: "assistant",
Content: message.Message,
}
}()
job.Result.Conversation = conv
job.Result.SetResponse("decided to initiate a new conversation")
job.Result.Finish(nil)
return
}
// If we don't have to reply , run the action!
if !chosenAction.Definition().Name.Is(action.ReplyActionName) {
if !chosenAction.Definition().Name.Is(action.PlanActionName) {
result, err := a.runAction(job.GetContext(), chosenAction, actionParams)
if err != nil {
//job.Result.Finish(fmt.Errorf("error running action: %w", err))
//return
// make the LLM aware of the error of running the action instead of stopping the job here
result.Result = fmt.Sprintf("Error running tool: %v", err)
}
stateResult := types.ActionState{
ActionCurrentState: types.ActionCurrentState{
Job: job,
Action: chosenAction,
Params: actionParams,
Reasoning: reasoning,
},
ActionResult: result,
}
job.Result.SetResult(stateResult)
job.CallbackWithResult(stateResult)
xlog.Debug("Action executed", "agent", a.Character.Name, "action", chosenAction.Definition().Name, "result", result)
conv = a.addFunctionResultToConversation(chosenAction, actionParams, result, conv)
}
//conv = append(conv, messages...)
//conv = messages
// given the result, we can now ask OpenAI to complete the conversation or
// to continue using another tool given the result
followingAction, followingParams, reasoning, err := a.pickAction(job.GetContext(), reEvaluationTemplate, conv)
if err != nil {
job.Result.Conversation = conv
job.Result.Finish(fmt.Errorf("error picking action: %w", err))
return
}
if followingAction != nil &&
!followingAction.Definition().Name.Is(action.ReplyActionName) &&
!chosenAction.Definition().Name.Is(action.ReplyActionName) &&
!followingAction.Definition().Name.Is(action.PlanActionName) {
xlog.Info("Following action", "action", followingAction.Definition().Name, "agent", a.Character.Name)
// We need to do another action (?)
// The agent decided to do another action
// call ourselves again
a.currentReasoning = reasoning
a.nextAction = followingAction
a.nextActionParams = &followingParams
a.consumeJob(job, role)
return
} else if followingAction == nil {
xlog.Info("Not following another action", "agent", a.Character.Name)
if !a.options.forceReasoning {
xlog.Info("Finish conversation with reasoning", "reasoning", reasoning, "agent", a.Character.Name)
msg := openai.ChatCompletionMessage{
Role: "assistant",
Content: reasoning,
}
conv = append(conv, msg)
a.saveCurrentConversation(conv)
job.Result.SetResponse(msg.Content)
job.Result.Conversation = conv
job.Result.Finish(nil)
return
}
} else if followingAction.Definition().Name.Is(action.PlanActionName) {
xlog.Debug("Following action is a plan action, skipping", "agent", a.Character.Name)
}
}
job.Result.Conversation = conv
// At this point can only be a reply action
xlog.Info("Computing reply", "agent", a.Character.Name)
// decode the response
replyResponse := action.ReplyResponse{}
if err := actionParams.Unmarshal(&replyResponse); err != nil {
job.Result.Conversation = conv
job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
return
}
// If we have already a reply from the action, just return it.
// Otherwise generate a full conversation to get a proper message response
// if chosenAction.Definition().Name.Is(action.ReplyActionName) {
// replyResponse := action.ReplyResponse{}
// if err := params.actionParams.Unmarshal(&replyResponse); err != nil {
// job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
// return
// }
// if replyResponse.Message != "" {
// job.Result.SetResponse(replyResponse.Message)
// job.Result.Finish(nil)
// return
// }
// }
// If we have a hud, display it when answering normally
if a.options.enableHUD {
prompt, err := renderTemplate(hudTemplate, a.prepareHUD(), a.availableActions(), reasoning)
if err != nil {
job.Result.Conversation = conv
job.Result.Finish(fmt.Errorf("error renderTemplate: %w", err))
return
}
if !Messages(conv).Exist(prompt) {
conv = append([]openai.ChatCompletionMessage{
{
Role: "system",
Content: prompt,
},
}, conv...)
}
}
// Generate a human-readable response
// resp, err := a.client.CreateChatCompletion(ctx,
// openai.ChatCompletionRequest{
// Model: a.options.LLMAPI.Model,
// Messages: append(conv,
// openai.ChatCompletionMessage{
// Role: "system",
// Content: "Assistant thought: " + replyResponse.Message,
// },
// ),
// },
// )
if !a.options.forceReasoning {
xlog.Info("No reasoning, return reply message", "reply", replyResponse.Message, "agent", a.Character.Name)
msg := openai.ChatCompletionMessage{
Role: "assistant",
Content: replyResponse.Message,
}
conv = append(conv, msg)
job.Result.Conversation = conv
job.Result.SetResponse(msg.Content)
a.saveCurrentConversation(conv)
job.Result.Finish(nil)
return
}
xlog.Info("Reasoning, ask LLM for a reply", "agent", a.Character.Name)
xlog.Debug("Conversation", "conversation", fmt.Sprintf("%+v", conv))
msg, err := a.askLLM(job.GetContext(), conv)
if err != nil {
job.Result.Conversation = conv
job.Result.Finish(err)
xlog.Error("Error asking LLM for a reply", "error", err)
return
}
// If we didn't got any message, we can use the response from the action
if chosenAction.Definition().Name.Is(action.ReplyActionName) && msg.Content == "" {
xlog.Info("No output returned from conversation, using the action response as a reply " + replyResponse.Message)
msg = openai.ChatCompletionMessage{
Role: "assistant",
Content: replyResponse.Message,
}
}
conv = append(conv, msg)
job.Result.SetResponse(msg.Content)
xlog.Info("Response from LLM", "response", msg.Content, "agent", a.Character.Name)
job.Result.Conversation = conv
a.saveCurrentConversation(conv)
job.Result.Finish(nil)
}
func (a *Agent) addFunctionResultToConversation(chosenAction types.Action, actionParams types.ActionParams, result types.ActionResult, conv Messages) Messages {
// calling the function
conv = append(conv, openai.ChatCompletionMessage{
Role: "assistant",
ToolCalls: []openai.ToolCall{
{
Type: openai.ToolTypeFunction,
Function: openai.FunctionCall{
Name: chosenAction.Definition().Name.String(),
Arguments: actionParams.String(),
},
},
},
})
// result of calling the function
conv = append(conv, openai.ChatCompletionMessage{
Role: openai.ChatMessageRoleTool,
Content: result.Result,
Name: chosenAction.Definition().Name.String(),
ToolCallID: chosenAction.Definition().Name.String(),
})
return conv
}
// This is running in the background.
func (a *Agent) periodicallyRun(timer *time.Timer) {
// Remember always to reset the timer - if we don't the agent will stop..
defer timer.Reset(a.options.periodicRuns)
xlog.Debug("Agent is running periodically", "agent", a.Character.Name)
// TODO: Would be nice if we have a special action to
// contact the user. This would actually make sure that
// if the agent wants to initiate a conversation, it can do so.
// This would be a special action that would be picked up by the agent
// and would be used to contact the user.
// if len(conv()) != 0 {
// // Here the LLM could decide to store some part of the conversation too in the memory
// evaluateMemory := NewJob(
// WithText(
// `Evaluate the current conversation and decide if we need to store some relevant informations from it`,
// ),
// WithReasoningCallback(a.options.reasoningCallback),
// WithResultCallback(a.options.resultCallback),
// )
// a.consumeJob(evaluateMemory, SystemRole)
// a.ResetConversation()
// }
if !a.options.standaloneJob {
return
}
xlog.Info("Periodically running", "agent", a.Character.Name)
// Here we go in a loop of
// - asking the agent to do something
// - evaluating the result
// - asking the agent to do something else based on the result
// whatNext := NewJob(WithText("Decide what to do based on the state"))
whatNext := types.NewJob(
types.WithText(innerMonologueTemplate),
types.WithReasoningCallback(a.options.reasoningCallback),
types.WithResultCallback(a.options.resultCallback),
)
a.consumeJob(whatNext, SystemRole)
xlog.Info("STOP -- Periodically run is done", "agent", a.Character.Name)
// Save results from state
// a.ResetConversation()
// doWork := NewJob(WithText("Select the tool to use based on your goal and the current state."))
// a.consumeJob(doWork, SystemRole)
// results := []string{}
// for _, v := range doWork.Result.State {
// results = append(results, v.Result)
// }
// a.ResetConversation()
// // Here the LLM could decide to do something based on the result of our automatic action
// evaluateAction := NewJob(
// WithText(
// `Evaluate the current situation and decide if we need to execute other tools (for instance to store results into permanent, or short memory).
// We have done the following actions:
// ` + strings.Join(results, "\n"),
// ))
// a.consumeJob(evaluateAction, SystemRole)
// a.ResetConversation()
}
func (a *Agent) Run() error {
// The agent run does two things:
// picks up requests from a queue
// and generates a response/perform actions
// It is also preemptive.
// That is, it can interrupt the current action
// if another one comes in.
// If there is no action, periodically evaluate if it has to do something on its own.
// Expose a REST API to interact with the agent to ask it things
//todoTimer := time.NewTicker(a.options.periodicRuns)
timer := time.NewTimer(a.options.periodicRuns)
for {
xlog.Debug("Agent is now waiting for a new job", "agent", a.Character.Name)
select {
case job := <-a.jobQueue:
a.loop(timer, job)
case <-a.context.Done():
// Agent has been canceled, return error
xlog.Warn("Agent has been canceled", "agent", a.Character.Name)
return ErrContextCanceled
case <-timer.C:
a.periodicallyRun(timer)
}
}
}
func (a *Agent) loop(timer *time.Timer, job *types.Job) {
// Remember always to reset the timer - if we don't the agent will stop..
defer timer.Reset(a.options.periodicRuns)
// Consume the job and generate a response
// TODO: Give a short-term memory to the agent
// stop and drain the timer
if !timer.Stop() {
<-timer.C
}
xlog.Debug("Agent is consuming a job", "agent", a.Character.Name, "job", job)
a.consumeJob(job, UserRole)
}