839 lines
24 KiB
Go
839 lines
24 KiB
Go
package agent
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"os"
|
|
"strings"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/mudler/LocalAgent/pkg/xlog"
|
|
|
|
"github.com/mudler/LocalAgent/core/action"
|
|
"github.com/mudler/LocalAgent/pkg/llm"
|
|
"github.com/sashabaranov/go-openai"
|
|
)
|
|
|
|
const (
|
|
UserRole = "user"
|
|
AssistantRole = "assistant"
|
|
SystemRole = "system"
|
|
)
|
|
|
|
type Agent struct {
|
|
sync.Mutex
|
|
options *options
|
|
Character Character
|
|
client *openai.Client
|
|
jobQueue chan *Job
|
|
actionContext *action.ActionContext
|
|
context *action.ActionContext
|
|
|
|
currentReasoning string
|
|
currentState *action.StateResult
|
|
nextAction Action
|
|
nextActionParams *action.ActionParams
|
|
currentConversation Messages
|
|
selfEvaluationInProgress bool
|
|
pause bool
|
|
|
|
newConversations chan openai.ChatCompletionMessage
|
|
}
|
|
|
|
type RAGDB interface {
|
|
Store(s string) error
|
|
Reset() error
|
|
Search(s string, similarEntries int) ([]string, error)
|
|
Count() int
|
|
}
|
|
|
|
func New(opts ...Option) (*Agent, error) {
|
|
options, err := newOptions(opts...)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("failed to set options: %v", err)
|
|
}
|
|
|
|
client := llm.NewClient(options.LLMAPI.APIKey, options.LLMAPI.APIURL, options.timeout)
|
|
|
|
c := context.Background()
|
|
if options.context != nil {
|
|
c = options.context
|
|
}
|
|
|
|
ctx, cancel := context.WithCancel(c)
|
|
a := &Agent{
|
|
jobQueue: make(chan *Job),
|
|
options: options,
|
|
client: client,
|
|
Character: options.character,
|
|
currentState: &action.StateResult{},
|
|
context: action.NewContext(ctx, cancel),
|
|
}
|
|
|
|
if a.options.statefile != "" {
|
|
if _, err := os.Stat(a.options.statefile); err == nil {
|
|
if err = a.LoadState(a.options.statefile); err != nil {
|
|
return a, fmt.Errorf("failed to load state: %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// var programLevel = new(xlog.LevelVar) // Info by default
|
|
// h := xlog.NewTextHandler(os.Stdout, &xlog.HandlerOptions{Level: programLevel})
|
|
// xlog = xlog.New(h)
|
|
//programLevel.Set(a.options.logLevel)
|
|
|
|
xlog.Info(
|
|
"Agent created",
|
|
"agent", a.Character.Name,
|
|
"character", a.Character.String(),
|
|
"state", a.State().String(),
|
|
"goal", a.options.permanentGoal,
|
|
)
|
|
|
|
return a, nil
|
|
}
|
|
|
|
// StopAction stops the current action
|
|
// if any. Can be called before adding a new job.
|
|
func (a *Agent) StopAction() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
if a.actionContext != nil {
|
|
xlog.Debug("Stopping current action", "agent", a.Character.Name)
|
|
a.actionContext.Cancel()
|
|
}
|
|
}
|
|
|
|
func (a *Agent) Context() context.Context {
|
|
return a.context.Context
|
|
}
|
|
|
|
func (a *Agent) ActionContext() context.Context {
|
|
return a.actionContext.Context
|
|
}
|
|
|
|
func (a *Agent) ConversationChannel() chan openai.ChatCompletionMessage {
|
|
return a.newConversations
|
|
}
|
|
|
|
// Ask is a pre-emptive, blocking call that returns the response as soon as it's ready.
|
|
// It discards any other computation.
|
|
func (a *Agent) Ask(opts ...JobOption) *JobResult {
|
|
xlog.Debug("Agent is being asked", "agent", a.Character.Name)
|
|
defer func() {
|
|
xlog.Debug("Agent has finished being asked", "agent", a.Character.Name)
|
|
}()
|
|
|
|
//a.StopAction()
|
|
j := NewJob(
|
|
append(
|
|
opts,
|
|
WithReasoningCallback(a.options.reasoningCallback),
|
|
WithResultCallback(a.options.resultCallback),
|
|
)...,
|
|
)
|
|
xlog.Debug("Job created", "agent", a.Character.Name, "job", j)
|
|
a.jobQueue <- j
|
|
xlog.Debug("Waiting result", "agent", a.Character.Name, "job", j)
|
|
return j.Result.WaitResult()
|
|
}
|
|
|
|
func (a *Agent) CurrentConversation() []openai.ChatCompletionMessage {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
return a.currentConversation
|
|
}
|
|
|
|
func (a *Agent) SetConversation(conv []openai.ChatCompletionMessage) {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
a.currentConversation = conv
|
|
}
|
|
|
|
func (a *Agent) askLLM(ctx context.Context, conversation []openai.ChatCompletionMessage) (openai.ChatCompletionMessage, error) {
|
|
resp, err := a.client.CreateChatCompletion(ctx,
|
|
openai.ChatCompletionRequest{
|
|
Model: a.options.LLMAPI.Model,
|
|
Messages: conversation,
|
|
},
|
|
)
|
|
if err != nil {
|
|
return openai.ChatCompletionMessage{}, err
|
|
}
|
|
|
|
if len(resp.Choices) != 1 {
|
|
return openai.ChatCompletionMessage{}, fmt.Errorf("no enough choices: %w", err)
|
|
}
|
|
|
|
return resp.Choices[0].Message, nil
|
|
}
|
|
|
|
func (a *Agent) ResetConversation() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
|
|
xlog.Info("Resetting conversation", "agent", a.Character.Name)
|
|
|
|
// store into memory the conversation before pruning it
|
|
// TODO: Shall we summarize the conversation into a bullet list of highlights
|
|
// using the LLM instead?
|
|
if a.options.enableLongTermMemory {
|
|
xlog.Info("Saving conversation", "agent", a.Character.Name, "conversation size", len(a.currentConversation))
|
|
|
|
if a.options.enableSummaryMemory && len(a.currentConversation) > 0 {
|
|
|
|
msg, err := a.askLLM(a.context.Context, []openai.ChatCompletionMessage{{
|
|
Role: "user",
|
|
Content: "Summarize the conversation below, keep the highlights as a bullet list:\n" + Messages(a.currentConversation).String(),
|
|
}})
|
|
if err != nil {
|
|
xlog.Error("Error summarizing conversation", "error", err)
|
|
}
|
|
|
|
if err := a.options.ragdb.Store(msg.Content); err != nil {
|
|
xlog.Error("Error storing into memory", "error", err)
|
|
}
|
|
} else {
|
|
for _, message := range a.currentConversation {
|
|
if message.Role == "user" {
|
|
if err := a.options.ragdb.Store(message.Content); err != nil {
|
|
xlog.Error("Error storing into memory", "error", err)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
a.currentConversation = []openai.ChatCompletionMessage{}
|
|
}
|
|
|
|
var ErrContextCanceled = fmt.Errorf("context canceled")
|
|
|
|
func (a *Agent) Stop() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
a.context.Cancel()
|
|
}
|
|
|
|
func (a *Agent) Pause() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
a.pause = true
|
|
}
|
|
|
|
func (a *Agent) Resume() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
a.pause = false
|
|
}
|
|
|
|
func (a *Agent) Paused() bool {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
return a.pause
|
|
}
|
|
|
|
func (a *Agent) Memory() RAGDB {
|
|
return a.options.ragdb
|
|
}
|
|
|
|
func (a *Agent) runAction(chosenAction Action, params action.ActionParams) (result string, err error) {
|
|
for _, action := range a.systemInternalActions() {
|
|
if action.Definition().Name == chosenAction.Definition().Name {
|
|
if result, err = action.Run(a.actionContext, params); err != nil {
|
|
return "", fmt.Errorf("error running action: %w", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
xlog.Info("Running action", "action", chosenAction.Definition().Name, "agent", a.Character.Name)
|
|
|
|
if chosenAction.Definition().Name.Is(action.StateActionName) {
|
|
// We need to store the result in the state
|
|
state := action.StateResult{}
|
|
|
|
err = params.Unmarshal(&state)
|
|
if err != nil {
|
|
return "", fmt.Errorf("error unmarshalling state of the agent: %w", err)
|
|
}
|
|
// update the current state with the one we just got from the action
|
|
a.currentState = &state
|
|
|
|
// update the state file
|
|
if a.options.statefile != "" {
|
|
if err := a.SaveState(a.options.statefile); err != nil {
|
|
return "", err
|
|
}
|
|
}
|
|
}
|
|
|
|
return result, nil
|
|
}
|
|
|
|
func (a *Agent) consumeJob(job *Job, role string) {
|
|
a.Lock()
|
|
paused := a.pause
|
|
a.Unlock()
|
|
|
|
if paused {
|
|
xlog.Info("Agent is paused, skipping job", "agent", a.Character.Name)
|
|
job.Result.Finish(fmt.Errorf("agent is paused"))
|
|
return
|
|
}
|
|
|
|
// We are self evaluating if we consume the job as a system role
|
|
selfEvaluation := role == SystemRole
|
|
|
|
a.Lock()
|
|
// Set the action context
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
a.actionContext = action.NewContext(ctx, cancel)
|
|
a.selfEvaluationInProgress = selfEvaluation
|
|
if len(job.conversationHistory) != 0 {
|
|
a.currentConversation = job.conversationHistory
|
|
}
|
|
a.Unlock()
|
|
|
|
defer func() {
|
|
a.Lock()
|
|
if a.actionContext != nil {
|
|
a.actionContext.Cancel()
|
|
a.actionContext = nil
|
|
}
|
|
a.Unlock()
|
|
}()
|
|
|
|
if selfEvaluation {
|
|
defer func() {
|
|
a.Lock()
|
|
a.selfEvaluationInProgress = false
|
|
a.Unlock()
|
|
}()
|
|
}
|
|
|
|
//if job.Image != "" {
|
|
// TODO: Use llava to explain the image content
|
|
//}
|
|
// Add custom prompts
|
|
for _, prompt := range a.options.prompts {
|
|
message := prompt.Render(a)
|
|
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
|
a.currentConversation = append([]openai.ChatCompletionMessage{
|
|
{
|
|
Role: prompt.Role(),
|
|
Content: message,
|
|
}}, a.currentConversation...)
|
|
}
|
|
}
|
|
|
|
// TODO: move to a Promptblock?
|
|
if a.options.systemPrompt != "" {
|
|
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
|
a.currentConversation = append([]openai.ChatCompletionMessage{
|
|
{
|
|
Role: "system",
|
|
Content: a.options.systemPrompt,
|
|
}}, a.currentConversation...)
|
|
}
|
|
}
|
|
|
|
if job.Text != "" {
|
|
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
|
Role: role,
|
|
Content: job.Text,
|
|
})
|
|
}
|
|
|
|
// TODO: move to a promptblock?
|
|
// RAG
|
|
if a.options.enableLongTermMemory && len(a.currentConversation) > 0 {
|
|
// Walk conversation from bottom to top, and find the first message of the user
|
|
// to use it as a query to the KB
|
|
var userMessage string
|
|
for i := len(a.currentConversation) - 1; i >= 0; i-- {
|
|
xlog.Info("[Long term memory] Conversation", "role", a.currentConversation[i].Role, "Content", a.currentConversation[i].Content)
|
|
if a.currentConversation[i].Role == "user" {
|
|
userMessage = a.currentConversation[i].Content
|
|
break
|
|
}
|
|
}
|
|
xlog.Info("[Long term memory] User message", "agent", a.Character.Name, "message", userMessage)
|
|
|
|
if userMessage != "" {
|
|
results, err := a.options.ragdb.Search(userMessage, a.options.kbResults)
|
|
if err != nil {
|
|
xlog.Info("Error finding similar strings inside KB:", "error", err)
|
|
|
|
// job.Result.Finish(fmt.Errorf("error finding similar strings inside KB: %w", err))
|
|
// return
|
|
}
|
|
|
|
if len(results) != 0 {
|
|
|
|
formatResults := ""
|
|
for _, r := range results {
|
|
formatResults += fmt.Sprintf("- %s \n", r)
|
|
}
|
|
xlog.Info("Found similar strings in KB", "agent", a.Character.Name, "results", formatResults)
|
|
|
|
// a.currentConversation = append(a.currentConversation,
|
|
// openai.ChatCompletionMessage{
|
|
// Role: "system",
|
|
// Content: fmt.Sprintf("Given the user input you have the following in memory:\n%s", formatResults),
|
|
// },
|
|
// )
|
|
a.currentConversation = append([]openai.ChatCompletionMessage{
|
|
{
|
|
Role: "system",
|
|
Content: fmt.Sprintf("Given the user input you have the following in memory:\n%s", formatResults),
|
|
}}, a.currentConversation...)
|
|
}
|
|
}
|
|
} else {
|
|
xlog.Info("[Long term memory] No conversation available", "agent", a.Character.Name)
|
|
}
|
|
|
|
var pickTemplate string
|
|
var reEvaluationTemplate string
|
|
|
|
if selfEvaluation {
|
|
pickTemplate = pickSelfTemplate
|
|
reEvaluationTemplate = reSelfEvalTemplate
|
|
} else {
|
|
pickTemplate = pickActionTemplate
|
|
reEvaluationTemplate = reEvalTemplate
|
|
}
|
|
|
|
// choose an action first
|
|
var chosenAction Action
|
|
var reasoning string
|
|
var actionParams action.ActionParams
|
|
|
|
if a.nextAction != nil {
|
|
// if we are being re-evaluated, we already have the action
|
|
// and the reasoning. Consume it here and reset it
|
|
chosenAction = a.nextAction
|
|
reasoning = a.currentReasoning
|
|
actionParams = *a.nextActionParams
|
|
a.currentReasoning = ""
|
|
a.nextActionParams = nil
|
|
a.nextAction = nil
|
|
} else {
|
|
var err error
|
|
chosenAction, actionParams, reasoning, err = a.pickAction(ctx, pickTemplate, a.currentConversation)
|
|
if err != nil {
|
|
xlog.Error("Error picking action", "error", err)
|
|
job.Result.Finish(err)
|
|
return
|
|
}
|
|
}
|
|
|
|
//xlog.Debug("Picked action", "agent", a.Character.Name, "action", chosenAction.Definition().Name, "reasoning", reasoning)
|
|
if chosenAction == nil {
|
|
// If no action was picked up, the reasoning is the message returned by the assistant
|
|
// so we can consume it as if it was a reply.
|
|
//job.Result.SetResult(ActionState{ActionCurrentState{nil, nil, "No action to do, just reply"}, ""})
|
|
//job.Result.Finish(fmt.Errorf("no action to do"))\
|
|
xlog.Info("No action to do, just reply", "agent", a.Character.Name, "reasoning", reasoning)
|
|
|
|
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: reasoning,
|
|
})
|
|
job.Result.SetResponse(reasoning)
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
if chosenAction.Definition().Name.Is(action.StopActionName) {
|
|
xlog.Info("LLM decided to stop")
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
// if we force a reasoning, we need to generate the parameters
|
|
if a.options.forceReasoning || actionParams == nil {
|
|
xlog.Info("Generating parameters",
|
|
"agent", a.Character.Name,
|
|
"action", chosenAction.Definition().Name,
|
|
"reasoning", reasoning,
|
|
)
|
|
|
|
params, err := a.generateParameters(ctx, pickTemplate, chosenAction, a.currentConversation, reasoning)
|
|
if err != nil {
|
|
job.Result.Finish(fmt.Errorf("error generating action's parameters: %w", err))
|
|
return
|
|
}
|
|
actionParams = params.actionParams
|
|
}
|
|
|
|
xlog.Info(
|
|
"Generated parameters",
|
|
"agent", a.Character.Name,
|
|
"action", chosenAction.Definition().Name,
|
|
"reasoning", reasoning,
|
|
"params", actionParams.String(),
|
|
)
|
|
|
|
if actionParams == nil {
|
|
job.Result.Finish(fmt.Errorf("no parameters"))
|
|
return
|
|
}
|
|
|
|
if !job.Callback(ActionCurrentState{chosenAction, actionParams, reasoning}) {
|
|
job.Result.SetResult(ActionState{ActionCurrentState{chosenAction, actionParams, reasoning}, "stopped by callback"})
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
if selfEvaluation && a.options.initiateConversations &&
|
|
chosenAction.Definition().Name.Is(action.ConversationActionName) {
|
|
|
|
message := action.ConversationActionResponse{}
|
|
if err := actionParams.Unmarshal(&message); err != nil {
|
|
job.Result.Finish(fmt.Errorf("error unmarshalling conversation response: %w", err))
|
|
return
|
|
}
|
|
|
|
a.currentConversation = []openai.ChatCompletionMessage{
|
|
{
|
|
Role: "assistant",
|
|
Content: message.Message,
|
|
},
|
|
}
|
|
go func() {
|
|
a.newConversations <- openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: message.Message,
|
|
}
|
|
}()
|
|
job.Result.SetResponse("decided to initiate a new conversation")
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
// If we don't have to reply , run the action!
|
|
if !chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
|
result, err := a.runAction(chosenAction, actionParams)
|
|
if err != nil {
|
|
//job.Result.Finish(fmt.Errorf("error running action: %w", err))
|
|
//return
|
|
// make the LLM aware of the error of running the action instead of stopping the job here
|
|
result = fmt.Sprintf("Error running tool: %v", err)
|
|
}
|
|
|
|
stateResult := ActionState{ActionCurrentState{chosenAction, actionParams, reasoning}, result}
|
|
job.Result.SetResult(stateResult)
|
|
job.CallbackWithResult(stateResult)
|
|
|
|
// calling the function
|
|
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
FunctionCall: &openai.FunctionCall{
|
|
Name: chosenAction.Definition().Name.String(),
|
|
Arguments: actionParams.String(),
|
|
},
|
|
})
|
|
|
|
// result of calling the function
|
|
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
|
Role: openai.ChatMessageRoleTool,
|
|
Content: result,
|
|
Name: chosenAction.Definition().Name.String(),
|
|
ToolCallID: chosenAction.Definition().Name.String(),
|
|
})
|
|
|
|
//a.currentConversation = append(a.currentConversation, messages...)
|
|
//a.currentConversation = messages
|
|
|
|
// given the result, we can now ask OpenAI to complete the conversation or
|
|
// to continue using another tool given the result
|
|
followingAction, followingParams, reasoning, err := a.pickAction(ctx, reEvaluationTemplate, a.currentConversation)
|
|
if err != nil {
|
|
job.Result.Finish(fmt.Errorf("error picking action: %w", err))
|
|
return
|
|
}
|
|
|
|
if followingAction != nil &&
|
|
!followingAction.Definition().Name.Is(action.ReplyActionName) &&
|
|
!chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
|
// We need to do another action (?)
|
|
// The agent decided to do another action
|
|
// call ourselves again
|
|
a.currentReasoning = reasoning
|
|
a.nextAction = followingAction
|
|
a.nextActionParams = &followingParams
|
|
job.Text = ""
|
|
a.consumeJob(job, role)
|
|
return
|
|
} else if followingAction == nil {
|
|
if !a.options.forceReasoning {
|
|
msg := openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: reasoning,
|
|
}
|
|
|
|
a.currentConversation = append(a.currentConversation, msg)
|
|
job.Result.SetResponse(msg.Content)
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point can only be a reply action
|
|
|
|
// decode the response
|
|
replyResponse := action.ReplyResponse{}
|
|
|
|
if err := actionParams.Unmarshal(&replyResponse); err != nil {
|
|
job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
|
|
return
|
|
}
|
|
|
|
// If we have already a reply from the action, just return it.
|
|
// Otherwise generate a full conversation to get a proper message response
|
|
// if chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
|
// replyResponse := action.ReplyResponse{}
|
|
// if err := params.actionParams.Unmarshal(&replyResponse); err != nil {
|
|
// job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
|
|
// return
|
|
// }
|
|
// if replyResponse.Message != "" {
|
|
// job.Result.SetResponse(replyResponse.Message)
|
|
// job.Result.Finish(nil)
|
|
// return
|
|
// }
|
|
// }
|
|
|
|
// If we have a hud, display it
|
|
if a.options.enableHUD {
|
|
var promptHUD *PromptHUD
|
|
if a.options.enableHUD {
|
|
h := a.prepareHUD()
|
|
promptHUD = &h
|
|
}
|
|
|
|
prompt, err := renderTemplate(hudTemplate, promptHUD, a.systemInternalActions(), reasoning)
|
|
if err != nil {
|
|
job.Result.Finish(fmt.Errorf("error renderTemplate: %w", err))
|
|
return
|
|
}
|
|
if !a.currentConversation.Exist(prompt) {
|
|
a.currentConversation = append([]openai.ChatCompletionMessage{
|
|
{
|
|
Role: "system",
|
|
Content: prompt,
|
|
},
|
|
}, a.currentConversation...)
|
|
}
|
|
}
|
|
|
|
// Generate a human-readable response
|
|
// resp, err := a.client.CreateChatCompletion(ctx,
|
|
// openai.ChatCompletionRequest{
|
|
// Model: a.options.LLMAPI.Model,
|
|
// Messages: append(a.currentConversation,
|
|
// openai.ChatCompletionMessage{
|
|
// Role: "system",
|
|
// Content: "Assistant thought: " + replyResponse.Message,
|
|
// },
|
|
// ),
|
|
// },
|
|
// )
|
|
|
|
if !a.options.forceReasoning {
|
|
msg := openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: replyResponse.Message,
|
|
}
|
|
|
|
a.currentConversation = append(a.currentConversation, msg)
|
|
job.Result.SetResponse(msg.Content)
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
msg, err := a.askLLM(ctx, append(a.currentConversation, openai.ChatCompletionMessage{
|
|
Role: "system",
|
|
Content: "The assistant needs to reply without using any tool.",
|
|
}))
|
|
if err != nil {
|
|
job.Result.Finish(err)
|
|
return
|
|
}
|
|
|
|
// If we didn't got any message, we can use the response from the action
|
|
if chosenAction.Definition().Name.Is(action.ReplyActionName) && msg.Content == "" ||
|
|
strings.Contains(msg.Content, "<tool_call>") {
|
|
xlog.Info("No output returned from conversation, using the action response as a reply " + replyResponse.Message)
|
|
|
|
msg = openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: replyResponse.Message,
|
|
}
|
|
}
|
|
|
|
a.currentConversation = append(a.currentConversation, msg)
|
|
job.Result.SetResponse(msg.Content)
|
|
job.Result.Finish(nil)
|
|
}
|
|
|
|
// This is running in the background.
|
|
func (a *Agent) periodicallyRun(timer *time.Timer) {
|
|
// Remember always to reset the timer - if we don't the agent will stop..
|
|
defer timer.Reset(a.options.periodicRuns)
|
|
|
|
a.StopAction()
|
|
xlog.Debug("Agent is running periodically", "agent", a.Character.Name)
|
|
|
|
// TODO: Would be nice if we have a special action to
|
|
// contact the user. This would actually make sure that
|
|
// if the agent wants to initiate a conversation, it can do so.
|
|
// This would be a special action that would be picked up by the agent
|
|
// and would be used to contact the user.
|
|
|
|
xlog.Info("START -- Periodically run is starting")
|
|
|
|
// if len(a.CurrentConversation()) != 0 {
|
|
// // Here the LLM could decide to store some part of the conversation too in the memory
|
|
// evaluateMemory := NewJob(
|
|
// WithText(
|
|
// `Evaluate the current conversation and decide if we need to store some relevant informations from it`,
|
|
// ),
|
|
// WithReasoningCallback(a.options.reasoningCallback),
|
|
// WithResultCallback(a.options.resultCallback),
|
|
// )
|
|
// a.consumeJob(evaluateMemory, SystemRole)
|
|
|
|
// a.ResetConversation()
|
|
// }
|
|
|
|
if !a.options.standaloneJob {
|
|
a.ResetConversation()
|
|
|
|
return
|
|
}
|
|
|
|
// Here we go in a loop of
|
|
// - asking the agent to do something
|
|
// - evaluating the result
|
|
// - asking the agent to do something else based on the result
|
|
|
|
// whatNext := NewJob(WithText("Decide what to do based on the state"))
|
|
whatNext := NewJob(
|
|
WithText(innerMonologueTemplate),
|
|
WithReasoningCallback(a.options.reasoningCallback),
|
|
WithResultCallback(a.options.resultCallback),
|
|
)
|
|
a.consumeJob(whatNext, SystemRole)
|
|
a.ResetConversation()
|
|
|
|
xlog.Info("STOP -- Periodically run is done")
|
|
|
|
// Save results from state
|
|
|
|
// a.ResetConversation()
|
|
|
|
// doWork := NewJob(WithText("Select the tool to use based on your goal and the current state."))
|
|
// a.consumeJob(doWork, SystemRole)
|
|
|
|
// results := []string{}
|
|
// for _, v := range doWork.Result.State {
|
|
// results = append(results, v.Result)
|
|
// }
|
|
|
|
// a.ResetConversation()
|
|
|
|
// // Here the LLM could decide to do something based on the result of our automatic action
|
|
// evaluateAction := NewJob(
|
|
// WithText(
|
|
// `Evaluate the current situation and decide if we need to execute other tools (for instance to store results into permanent, or short memory).
|
|
// We have done the following actions:
|
|
// ` + strings.Join(results, "\n"),
|
|
// ))
|
|
// a.consumeJob(evaluateAction, SystemRole)
|
|
|
|
// a.ResetConversation()
|
|
}
|
|
|
|
func (a *Agent) prepareIdentity() error {
|
|
|
|
if a.options.characterfile != "" {
|
|
if _, err := os.Stat(a.options.characterfile); err == nil {
|
|
// if there is a file, load the character back
|
|
if err = a.LoadCharacter(a.options.characterfile); err != nil {
|
|
return fmt.Errorf("failed to load character: %v", err)
|
|
}
|
|
} else {
|
|
if a.options.randomIdentity {
|
|
if err = a.generateIdentity(a.options.randomIdentityGuidance); err != nil {
|
|
return fmt.Errorf("failed to generate identity: %v", err)
|
|
}
|
|
}
|
|
|
|
// otherwise save it for next time
|
|
if err = a.SaveCharacter(a.options.characterfile); err != nil {
|
|
return fmt.Errorf("failed to save character: %v", err)
|
|
}
|
|
}
|
|
} else {
|
|
if err := a.generateIdentity(a.options.randomIdentityGuidance); err != nil {
|
|
return fmt.Errorf("failed to generate identity: %v", err)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (a *Agent) Run() error {
|
|
// The agent run does two things:
|
|
// picks up requests from a queue
|
|
// and generates a response/perform actions
|
|
|
|
if err := a.prepareIdentity(); err != nil {
|
|
return fmt.Errorf("failed to prepare identity: %v", err)
|
|
}
|
|
|
|
// It is also preemptive.
|
|
// That is, it can interrupt the current action
|
|
// if another one comes in.
|
|
|
|
// If there is no action, periodically evaluate if it has to do something on its own.
|
|
|
|
// Expose a REST API to interact with the agent to ask it things
|
|
|
|
//todoTimer := time.NewTicker(a.options.periodicRuns)
|
|
timer := time.NewTimer(a.options.periodicRuns)
|
|
for {
|
|
xlog.Debug("Agent is waiting for a job", "agent", a.Character.Name)
|
|
select {
|
|
case job := <-a.jobQueue:
|
|
a.loop(timer, job)
|
|
case <-a.context.Done():
|
|
// Agent has been canceled, return error
|
|
xlog.Warn("Agent has been canceled", "agent", a.Character.Name)
|
|
return ErrContextCanceled
|
|
case <-timer.C:
|
|
a.periodicallyRun(timer)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (a *Agent) loop(timer *time.Timer, job *Job) {
|
|
// Remember always to reset the timer - if we don't the agent will stop..
|
|
defer timer.Reset(a.options.periodicRuns)
|
|
// Consume the job and generate a response
|
|
// TODO: Give a short-term memory to the agent
|
|
// stop and drain the timer
|
|
if !timer.Stop() {
|
|
<-timer.C
|
|
}
|
|
xlog.Debug("Agent is consuming a job", "agent", a.Character.Name, "job", job)
|
|
a.StopAction()
|
|
a.consumeJob(job, UserRole)
|
|
}
|