* switch to observer pattern Signed-off-by: mudler <mudler@localai.io> * keep conversation history in telegram and slack * generalize with conversation tracker --------- Signed-off-by: mudler <mudler@localai.io>
890 lines
24 KiB
Go
890 lines
24 KiB
Go
package agent
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"os"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/mudler/LocalAgent/pkg/xlog"
|
|
|
|
"github.com/mudler/LocalAgent/core/action"
|
|
"github.com/mudler/LocalAgent/core/types"
|
|
"github.com/mudler/LocalAgent/pkg/llm"
|
|
"github.com/sashabaranov/go-openai"
|
|
)
|
|
|
|
const (
|
|
UserRole = "user"
|
|
AssistantRole = "assistant"
|
|
SystemRole = "system"
|
|
)
|
|
|
|
type Agent struct {
|
|
sync.Mutex
|
|
options *options
|
|
Character Character
|
|
client *openai.Client
|
|
jobQueue chan *types.Job
|
|
actionContext *types.ActionContext
|
|
context *types.ActionContext
|
|
|
|
currentReasoning string
|
|
currentState *action.AgentInternalState
|
|
nextAction types.Action
|
|
nextActionParams *types.ActionParams
|
|
selfEvaluationInProgress bool
|
|
pause bool
|
|
|
|
newConversations chan openai.ChatCompletionMessage
|
|
|
|
mcpActions types.Actions
|
|
|
|
newMessagesSubscribers []func(openai.ChatCompletionMessage)
|
|
}
|
|
|
|
type RAGDB interface {
|
|
Store(s string) error
|
|
Reset() error
|
|
Search(s string, similarEntries int) ([]string, error)
|
|
Count() int
|
|
}
|
|
|
|
func New(opts ...Option) (*Agent, error) {
|
|
options, err := newOptions(opts...)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("failed to set options: %v", err)
|
|
}
|
|
|
|
client := llm.NewClient(options.LLMAPI.APIKey, options.LLMAPI.APIURL, options.timeout)
|
|
|
|
c := context.Background()
|
|
if options.context != nil {
|
|
c = options.context
|
|
}
|
|
|
|
ctx, cancel := context.WithCancel(c)
|
|
a := &Agent{
|
|
jobQueue: make(chan *types.Job),
|
|
options: options,
|
|
client: client,
|
|
Character: options.character,
|
|
currentState: &action.AgentInternalState{},
|
|
context: types.NewActionContext(ctx, cancel),
|
|
newMessagesSubscribers: options.newConversationsSubscribers,
|
|
}
|
|
|
|
if a.options.statefile != "" {
|
|
if _, err := os.Stat(a.options.statefile); err == nil {
|
|
if err = a.LoadState(a.options.statefile); err != nil {
|
|
return a, fmt.Errorf("failed to load state: %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// var programLevel = new(xlog.LevelVar) // Info by default
|
|
// h := xlog.NewTextHandler(os.Stdout, &xlog.HandlerOptions{Level: programLevel})
|
|
// xlog = xlog.New(h)
|
|
//programLevel.Set(a.options.logLevel)
|
|
|
|
if err := a.prepareIdentity(); err != nil {
|
|
return nil, fmt.Errorf("failed to prepare identity: %v", err)
|
|
}
|
|
|
|
xlog.Info("Populating actions from MCP Servers (if any)")
|
|
a.initMCPActions()
|
|
xlog.Info("Done populating actions from MCP Servers")
|
|
|
|
xlog.Info(
|
|
"Agent created",
|
|
"agent", a.Character.Name,
|
|
"character", a.Character.String(),
|
|
"state", a.State().String(),
|
|
"goal", a.options.permanentGoal,
|
|
"model", a.options.LLMAPI.Model,
|
|
)
|
|
|
|
a.startNewConversationsConsumer()
|
|
|
|
return a, nil
|
|
}
|
|
|
|
func (a *Agent) startNewConversationsConsumer() {
|
|
go func() {
|
|
for {
|
|
select {
|
|
case <-a.context.Done():
|
|
return
|
|
|
|
case msg := <-a.newConversations:
|
|
for _, s := range a.newMessagesSubscribers {
|
|
s(msg)
|
|
}
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// StopAction stops the current action
|
|
// if any. Can be called before adding a new job.
|
|
func (a *Agent) StopAction() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
if a.actionContext != nil {
|
|
xlog.Debug("Stopping current action", "agent", a.Character.Name)
|
|
a.actionContext.Cancel()
|
|
}
|
|
}
|
|
|
|
func (a *Agent) Context() context.Context {
|
|
return a.context.Context
|
|
}
|
|
|
|
func (a *Agent) ActionContext() context.Context {
|
|
return a.actionContext.Context
|
|
}
|
|
|
|
// Ask is a pre-emptive, blocking call that returns the response as soon as it's ready.
|
|
// It discards any other computation.
|
|
func (a *Agent) Ask(opts ...types.JobOption) *types.JobResult {
|
|
xlog.Debug("Agent Ask()", "agent", a.Character.Name, "model", a.options.LLMAPI.Model)
|
|
defer func() {
|
|
xlog.Debug("Agent has finished being asked", "agent", a.Character.Name)
|
|
}()
|
|
|
|
//a.StopAction()
|
|
j := types.NewJob(
|
|
append(
|
|
opts,
|
|
types.WithReasoningCallback(a.options.reasoningCallback),
|
|
types.WithResultCallback(a.options.resultCallback),
|
|
)...,
|
|
)
|
|
a.jobQueue <- j
|
|
return j.Result.WaitResult()
|
|
}
|
|
|
|
func (a *Agent) askLLM(ctx context.Context, conversation []openai.ChatCompletionMessage) (openai.ChatCompletionMessage, error) {
|
|
resp, err := a.client.CreateChatCompletion(ctx,
|
|
openai.ChatCompletionRequest{
|
|
Model: a.options.LLMAPI.Model,
|
|
Messages: conversation,
|
|
},
|
|
)
|
|
if err != nil {
|
|
return openai.ChatCompletionMessage{}, err
|
|
}
|
|
|
|
if len(resp.Choices) != 1 {
|
|
return openai.ChatCompletionMessage{}, fmt.Errorf("no enough choices: %w", err)
|
|
}
|
|
|
|
return resp.Choices[0].Message, nil
|
|
}
|
|
|
|
var ErrContextCanceled = fmt.Errorf("context canceled")
|
|
|
|
func (a *Agent) Stop() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
xlog.Debug("Stopping agent", "agent", a.Character.Name)
|
|
a.context.Cancel()
|
|
}
|
|
|
|
func (a *Agent) Pause() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
a.pause = true
|
|
|
|
}
|
|
|
|
func (a *Agent) Resume() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
a.pause = false
|
|
}
|
|
|
|
func (a *Agent) Paused() bool {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
return a.pause
|
|
}
|
|
|
|
func (a *Agent) Memory() RAGDB {
|
|
return a.options.ragdb
|
|
}
|
|
|
|
func (a *Agent) runAction(chosenAction types.Action, params types.ActionParams) (result types.ActionResult, err error) {
|
|
for _, act := range a.availableActions() {
|
|
if act.Definition().Name == chosenAction.Definition().Name {
|
|
res, err := act.Run(a.actionContext, params)
|
|
if err != nil {
|
|
return types.ActionResult{}, fmt.Errorf("error running action: %w", err)
|
|
}
|
|
|
|
result = res
|
|
}
|
|
}
|
|
|
|
xlog.Info("Running action", "action", chosenAction.Definition().Name, "agent", a.Character.Name)
|
|
|
|
if chosenAction.Definition().Name.Is(action.StateActionName) {
|
|
// We need to store the result in the state
|
|
state := action.AgentInternalState{}
|
|
|
|
err = params.Unmarshal(&state)
|
|
if err != nil {
|
|
return types.ActionResult{}, fmt.Errorf("error unmarshalling state of the agent: %w", err)
|
|
}
|
|
// update the current state with the one we just got from the action
|
|
a.currentState = &state
|
|
|
|
// update the state file
|
|
if a.options.statefile != "" {
|
|
if err := a.SaveState(a.options.statefile); err != nil {
|
|
return types.ActionResult{}, err
|
|
}
|
|
}
|
|
}
|
|
|
|
return result, nil
|
|
}
|
|
|
|
func (a *Agent) processPrompts(conversation Messages) Messages {
|
|
//if job.Image != "" {
|
|
// TODO: Use llava to explain the image content
|
|
//}
|
|
// Add custom prompts
|
|
for _, prompt := range a.options.prompts {
|
|
message, err := prompt.Render(a)
|
|
if err != nil {
|
|
xlog.Error("Error rendering prompt", "error", err)
|
|
continue
|
|
}
|
|
if message == "" {
|
|
xlog.Debug("Prompt is empty, skipping", "agent", a.Character.Name)
|
|
continue
|
|
}
|
|
if !conversation.Exist(a.options.systemPrompt) {
|
|
conversation = append([]openai.ChatCompletionMessage{
|
|
{
|
|
Role: prompt.Role(),
|
|
Content: message,
|
|
}}, conversation...)
|
|
}
|
|
}
|
|
|
|
// TODO: move to a Promptblock?
|
|
if a.options.systemPrompt != "" {
|
|
if !conversation.Exist(a.options.systemPrompt) {
|
|
conversation = append([]openai.ChatCompletionMessage{
|
|
{
|
|
Role: "system",
|
|
Content: a.options.systemPrompt,
|
|
}}, conversation...)
|
|
}
|
|
}
|
|
|
|
return conversation
|
|
}
|
|
|
|
func (a *Agent) describeImage(ctx context.Context, model, imageURL string) (string, error) {
|
|
xlog.Debug("Describing image", "model", model, "image", imageURL)
|
|
resp, err := a.client.CreateChatCompletion(ctx,
|
|
openai.ChatCompletionRequest{
|
|
Model: model,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
|
|
Role: "user",
|
|
MultiContent: []openai.ChatMessagePart{
|
|
{
|
|
Type: openai.ChatMessagePartTypeText,
|
|
Text: "What is in the image?",
|
|
},
|
|
{
|
|
Type: openai.ChatMessagePartTypeImageURL,
|
|
ImageURL: &openai.ChatMessageImageURL{
|
|
|
|
URL: imageURL,
|
|
},
|
|
},
|
|
},
|
|
},
|
|
}})
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
if len(resp.Choices) == 0 {
|
|
return "", fmt.Errorf("no choices")
|
|
}
|
|
|
|
xlog.Debug("Described image", "description", resp.Choices[0].Message.Content)
|
|
return resp.Choices[0].Message.Content, nil
|
|
}
|
|
|
|
func extractImageContent(message openai.ChatCompletionMessage) (imageURL, text string, e error) {
|
|
e = fmt.Errorf("no image found")
|
|
if message.MultiContent != nil {
|
|
for _, content := range message.MultiContent {
|
|
if content.Type == openai.ChatMessagePartTypeImageURL {
|
|
imageURL = content.ImageURL.URL
|
|
e = nil
|
|
}
|
|
if content.Type == openai.ChatMessagePartTypeText {
|
|
text = content.Text
|
|
e = nil
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func (a *Agent) processUserInputs(job *types.Job, role string, conv Messages) Messages {
|
|
|
|
// walk conversation history, and check if last message from user contains image.
|
|
// If it does, we need to describe the image first with a model that supports image understanding (if the current model doesn't support it)
|
|
// and add it to the conversation context
|
|
if !a.options.SeparatedMultimodalModel() {
|
|
return conv
|
|
}
|
|
lastUserMessage := conv.GetLatestUserMessage()
|
|
if lastUserMessage != nil && conv.IsLastMessageFromRole(UserRole) {
|
|
imageURL, text, err := extractImageContent(*lastUserMessage)
|
|
if err == nil {
|
|
// We have an image, we need to describe it first
|
|
// and add it to the conversation context
|
|
imageDescription, err := a.describeImage(a.context.Context, a.options.LLMAPI.MultimodalModel, imageURL)
|
|
if err != nil {
|
|
xlog.Error("Error describing image", "error", err)
|
|
} else {
|
|
// We replace the user message with the image description
|
|
// and add the user text to the conversation
|
|
explainerMessage := openai.ChatCompletionMessage{
|
|
Role: "system",
|
|
Content: fmt.Sprintf("The user shared an image which can be described as: %s", imageDescription),
|
|
}
|
|
|
|
// remove lastUserMessage from the conversation
|
|
conv = conv.RemoveLastUserMessage()
|
|
conv = append(conv, explainerMessage)
|
|
conv = append(conv, openai.ChatCompletionMessage{
|
|
Role: role,
|
|
Content: text,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
return conv
|
|
}
|
|
|
|
func (a *Agent) consumeJob(job *types.Job, role string) {
|
|
a.Lock()
|
|
paused := a.pause
|
|
a.Unlock()
|
|
|
|
if paused {
|
|
xlog.Info("Agent is paused, skipping job", "agent", a.Character.Name)
|
|
job.Result.Finish(fmt.Errorf("agent is paused"))
|
|
return
|
|
}
|
|
|
|
// We are self evaluating if we consume the job as a system role
|
|
selfEvaluation := role == SystemRole
|
|
|
|
conv := job.ConversationHistory
|
|
|
|
a.Lock()
|
|
// Set the action context
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
a.actionContext = types.NewActionContext(ctx, cancel)
|
|
a.selfEvaluationInProgress = selfEvaluation
|
|
a.Unlock()
|
|
|
|
defer func() {
|
|
a.Lock()
|
|
if a.actionContext != nil {
|
|
a.actionContext.Cancel()
|
|
a.actionContext = nil
|
|
}
|
|
a.Unlock()
|
|
}()
|
|
|
|
if selfEvaluation {
|
|
defer func() {
|
|
a.Lock()
|
|
a.selfEvaluationInProgress = false
|
|
a.Unlock()
|
|
}()
|
|
}
|
|
|
|
conv = a.processPrompts(conv)
|
|
conv = a.processUserInputs(job, role, conv)
|
|
|
|
// RAG
|
|
a.knowledgeBaseLookup(conv)
|
|
|
|
var pickTemplate string
|
|
var reEvaluationTemplate string
|
|
|
|
if selfEvaluation {
|
|
pickTemplate = pickSelfTemplate
|
|
reEvaluationTemplate = reSelfEvalTemplate
|
|
} else {
|
|
pickTemplate = pickActionTemplate
|
|
reEvaluationTemplate = reEvalTemplate
|
|
}
|
|
|
|
// choose an action first
|
|
var chosenAction types.Action
|
|
var reasoning string
|
|
var actionParams types.ActionParams
|
|
|
|
if a.nextAction != nil {
|
|
// if we are being re-evaluated, we already have the action
|
|
// and the reasoning. Consume it here and reset it
|
|
chosenAction = a.nextAction
|
|
reasoning = a.currentReasoning
|
|
actionParams = *a.nextActionParams
|
|
a.currentReasoning = ""
|
|
a.nextActionParams = nil
|
|
a.nextAction = nil
|
|
} else {
|
|
var err error
|
|
chosenAction, actionParams, reasoning, err = a.pickAction(ctx, pickTemplate, conv)
|
|
if err != nil {
|
|
xlog.Error("Error picking action", "error", err)
|
|
job.Result.Finish(err)
|
|
return
|
|
}
|
|
}
|
|
|
|
//xlog.Debug("Picked action", "agent", a.Character.Name, "action", chosenAction.Definition().Name, "reasoning", reasoning)
|
|
if chosenAction == nil {
|
|
// If no action was picked up, the reasoning is the message returned by the assistant
|
|
// so we can consume it as if it was a reply.
|
|
//job.Result.SetResult(ActionState{ActionCurrentState{nil, nil, "No action to do, just reply"}, ""})
|
|
//job.Result.Finish(fmt.Errorf("no action to do"))\
|
|
xlog.Info("No action to do, just reply", "agent", a.Character.Name, "reasoning", reasoning)
|
|
|
|
conv = append(conv, openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: reasoning,
|
|
})
|
|
job.Result.Conversation = conv
|
|
a.saveCurrentConversation(conv)
|
|
job.Result.SetResponse(reasoning)
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
if chosenAction.Definition().Name.Is(action.StopActionName) {
|
|
xlog.Info("LLM decided to stop")
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
// if we force a reasoning, we need to generate the parameters
|
|
if a.options.forceReasoning || actionParams == nil {
|
|
xlog.Info("Generating parameters",
|
|
"agent", a.Character.Name,
|
|
"action", chosenAction.Definition().Name,
|
|
"reasoning", reasoning,
|
|
)
|
|
|
|
params, err := a.generateParameters(ctx, pickTemplate, chosenAction, conv, reasoning)
|
|
if err != nil {
|
|
job.Result.Finish(fmt.Errorf("error generating action's parameters: %w", err))
|
|
return
|
|
}
|
|
actionParams = params.actionParams
|
|
}
|
|
|
|
xlog.Info(
|
|
"Generated parameters",
|
|
"agent", a.Character.Name,
|
|
"action", chosenAction.Definition().Name,
|
|
"reasoning", reasoning,
|
|
"params", actionParams.String(),
|
|
)
|
|
|
|
if actionParams == nil {
|
|
job.Result.Finish(fmt.Errorf("no parameters"))
|
|
xlog.Error("No parameters", "agent", a.Character.Name)
|
|
return
|
|
}
|
|
|
|
if err := a.handlePlanning(ctx, job, chosenAction, actionParams, reasoning, pickTemplate, conv); err != nil {
|
|
job.Result.Finish(fmt.Errorf("error running action: %w", err))
|
|
return
|
|
}
|
|
|
|
if !job.Callback(types.ActionCurrentState{
|
|
Job: job,
|
|
Action: chosenAction,
|
|
Params: actionParams,
|
|
Reasoning: reasoning}) {
|
|
job.Result.SetResult(types.ActionState{
|
|
ActionCurrentState: types.ActionCurrentState{
|
|
Job: job,
|
|
Action: chosenAction,
|
|
Params: actionParams,
|
|
Reasoning: reasoning,
|
|
},
|
|
ActionResult: types.ActionResult{Result: "stopped by callback"}})
|
|
job.Result.Conversation = conv
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
if selfEvaluation && a.options.initiateConversations &&
|
|
chosenAction.Definition().Name.Is(action.ConversationActionName) {
|
|
|
|
message := action.ConversationActionResponse{}
|
|
if err := actionParams.Unmarshal(&message); err != nil {
|
|
job.Result.Finish(fmt.Errorf("error unmarshalling conversation response: %w", err))
|
|
return
|
|
}
|
|
|
|
conv = []openai.ChatCompletionMessage{
|
|
{
|
|
Role: "assistant",
|
|
Content: message.Message,
|
|
},
|
|
}
|
|
go func() {
|
|
a.newConversations <- openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: message.Message,
|
|
}
|
|
}()
|
|
job.Result.Conversation = conv
|
|
job.Result.SetResponse("decided to initiate a new conversation")
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
// If we don't have to reply , run the action!
|
|
if !chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
|
|
|
if !chosenAction.Definition().Name.Is(action.PlanActionName) {
|
|
result, err := a.runAction(chosenAction, actionParams)
|
|
if err != nil {
|
|
//job.Result.Finish(fmt.Errorf("error running action: %w", err))
|
|
//return
|
|
// make the LLM aware of the error of running the action instead of stopping the job here
|
|
result.Result = fmt.Sprintf("Error running tool: %v", err)
|
|
}
|
|
|
|
stateResult := types.ActionState{
|
|
ActionCurrentState: types.ActionCurrentState{
|
|
Job: job,
|
|
Action: chosenAction,
|
|
Params: actionParams,
|
|
Reasoning: reasoning,
|
|
},
|
|
ActionResult: result,
|
|
}
|
|
job.Result.SetResult(stateResult)
|
|
job.CallbackWithResult(stateResult)
|
|
xlog.Debug("Action executed", "agent", a.Character.Name, "action", chosenAction.Definition().Name, "result", result)
|
|
|
|
conv = a.addFunctionResultToConversation(chosenAction, actionParams, result, conv)
|
|
}
|
|
|
|
//conv = append(conv, messages...)
|
|
//conv = messages
|
|
|
|
// given the result, we can now ask OpenAI to complete the conversation or
|
|
// to continue using another tool given the result
|
|
followingAction, followingParams, reasoning, err := a.pickAction(ctx, reEvaluationTemplate, conv)
|
|
if err != nil {
|
|
job.Result.Conversation = conv
|
|
job.Result.Finish(fmt.Errorf("error picking action: %w", err))
|
|
return
|
|
}
|
|
|
|
if followingAction != nil &&
|
|
!followingAction.Definition().Name.Is(action.ReplyActionName) &&
|
|
!chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
|
xlog.Info("Following action", "action", followingAction.Definition().Name, "agent", a.Character.Name)
|
|
|
|
// We need to do another action (?)
|
|
// The agent decided to do another action
|
|
// call ourselves again
|
|
a.currentReasoning = reasoning
|
|
a.nextAction = followingAction
|
|
a.nextActionParams = &followingParams
|
|
a.consumeJob(job, role)
|
|
return
|
|
} else if followingAction == nil {
|
|
xlog.Info("Not following another action", "agent", a.Character.Name)
|
|
|
|
if !a.options.forceReasoning {
|
|
xlog.Info("Finish conversation with reasoning", "reasoning", reasoning, "agent", a.Character.Name)
|
|
|
|
msg := openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: reasoning,
|
|
}
|
|
|
|
conv = append(conv, msg)
|
|
a.saveCurrentConversation(conv)
|
|
job.Result.SetResponse(msg.Content)
|
|
job.Result.Conversation = conv
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
job.Result.Conversation = conv
|
|
|
|
// At this point can only be a reply action
|
|
xlog.Info("Computing reply", "agent", a.Character.Name)
|
|
|
|
// decode the response
|
|
replyResponse := action.ReplyResponse{}
|
|
|
|
if err := actionParams.Unmarshal(&replyResponse); err != nil {
|
|
job.Result.Conversation = conv
|
|
job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
|
|
return
|
|
}
|
|
|
|
// If we have already a reply from the action, just return it.
|
|
// Otherwise generate a full conversation to get a proper message response
|
|
// if chosenAction.Definition().Name.Is(action.ReplyActionName) {
|
|
// replyResponse := action.ReplyResponse{}
|
|
// if err := params.actionParams.Unmarshal(&replyResponse); err != nil {
|
|
// job.Result.Finish(fmt.Errorf("error unmarshalling reply response: %w", err))
|
|
// return
|
|
// }
|
|
// if replyResponse.Message != "" {
|
|
// job.Result.SetResponse(replyResponse.Message)
|
|
// job.Result.Finish(nil)
|
|
// return
|
|
// }
|
|
// }
|
|
|
|
// If we have a hud, display it when answering normally
|
|
if a.options.enableHUD {
|
|
prompt, err := renderTemplate(hudTemplate, a.prepareHUD(), a.availableActions(), reasoning)
|
|
if err != nil {
|
|
job.Result.Conversation = conv
|
|
job.Result.Finish(fmt.Errorf("error renderTemplate: %w", err))
|
|
return
|
|
}
|
|
if !Messages(conv).Exist(prompt) {
|
|
conv = append([]openai.ChatCompletionMessage{
|
|
{
|
|
Role: "system",
|
|
Content: prompt,
|
|
},
|
|
}, conv...)
|
|
}
|
|
}
|
|
|
|
// Generate a human-readable response
|
|
// resp, err := a.client.CreateChatCompletion(ctx,
|
|
// openai.ChatCompletionRequest{
|
|
// Model: a.options.LLMAPI.Model,
|
|
// Messages: append(conv,
|
|
// openai.ChatCompletionMessage{
|
|
// Role: "system",
|
|
// Content: "Assistant thought: " + replyResponse.Message,
|
|
// },
|
|
// ),
|
|
// },
|
|
// )
|
|
|
|
if !a.options.forceReasoning {
|
|
xlog.Info("No reasoning, return reply message", "reply", replyResponse.Message, "agent", a.Character.Name)
|
|
|
|
msg := openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: replyResponse.Message,
|
|
}
|
|
|
|
conv = append(conv, msg)
|
|
job.Result.Conversation = conv
|
|
job.Result.SetResponse(msg.Content)
|
|
a.saveCurrentConversation(conv)
|
|
job.Result.Finish(nil)
|
|
return
|
|
}
|
|
|
|
xlog.Info("Reasoning, ask LLM for a reply", "agent", a.Character.Name)
|
|
xlog.Debug("Conversation", "conversation", fmt.Sprintf("%+v", conv))
|
|
msg, err := a.askLLM(ctx, conv)
|
|
if err != nil {
|
|
job.Result.Conversation = conv
|
|
job.Result.Finish(err)
|
|
xlog.Error("Error asking LLM for a reply", "error", err)
|
|
return
|
|
}
|
|
|
|
// If we didn't got any message, we can use the response from the action
|
|
if chosenAction.Definition().Name.Is(action.ReplyActionName) && msg.Content == "" {
|
|
xlog.Info("No output returned from conversation, using the action response as a reply " + replyResponse.Message)
|
|
|
|
msg = openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
Content: replyResponse.Message,
|
|
}
|
|
}
|
|
|
|
conv = append(conv, msg)
|
|
job.Result.SetResponse(msg.Content)
|
|
xlog.Info("Response from LLM", "response", msg.Content, "agent", a.Character.Name)
|
|
job.Result.Conversation = conv
|
|
a.saveCurrentConversation(conv)
|
|
job.Result.Finish(nil)
|
|
}
|
|
|
|
func (a *Agent) addFunctionResultToConversation(chosenAction types.Action, actionParams types.ActionParams, result types.ActionResult, conv Messages) Messages {
|
|
// calling the function
|
|
conv = append(conv, openai.ChatCompletionMessage{
|
|
Role: "assistant",
|
|
ToolCalls: []openai.ToolCall{
|
|
{
|
|
Type: openai.ToolTypeFunction,
|
|
Function: openai.FunctionCall{
|
|
Name: chosenAction.Definition().Name.String(),
|
|
Arguments: actionParams.String(),
|
|
},
|
|
},
|
|
},
|
|
})
|
|
|
|
// result of calling the function
|
|
conv = append(conv, openai.ChatCompletionMessage{
|
|
Role: openai.ChatMessageRoleTool,
|
|
Content: result.Result,
|
|
Name: chosenAction.Definition().Name.String(),
|
|
ToolCallID: chosenAction.Definition().Name.String(),
|
|
})
|
|
|
|
return conv
|
|
}
|
|
|
|
// This is running in the background.
|
|
func (a *Agent) periodicallyRun(timer *time.Timer) {
|
|
// Remember always to reset the timer - if we don't the agent will stop..
|
|
defer timer.Reset(a.options.periodicRuns)
|
|
|
|
a.StopAction()
|
|
xlog.Debug("Agent is running periodically", "agent", a.Character.Name)
|
|
|
|
// TODO: Would be nice if we have a special action to
|
|
// contact the user. This would actually make sure that
|
|
// if the agent wants to initiate a conversation, it can do so.
|
|
// This would be a special action that would be picked up by the agent
|
|
// and would be used to contact the user.
|
|
|
|
// if len(conv()) != 0 {
|
|
// // Here the LLM could decide to store some part of the conversation too in the memory
|
|
// evaluateMemory := NewJob(
|
|
// WithText(
|
|
// `Evaluate the current conversation and decide if we need to store some relevant informations from it`,
|
|
// ),
|
|
// WithReasoningCallback(a.options.reasoningCallback),
|
|
// WithResultCallback(a.options.resultCallback),
|
|
// )
|
|
// a.consumeJob(evaluateMemory, SystemRole)
|
|
|
|
// a.ResetConversation()
|
|
// }
|
|
|
|
if !a.options.standaloneJob {
|
|
return
|
|
}
|
|
xlog.Info("Periodically running", "agent", a.Character.Name)
|
|
|
|
// Here we go in a loop of
|
|
// - asking the agent to do something
|
|
// - evaluating the result
|
|
// - asking the agent to do something else based on the result
|
|
|
|
// whatNext := NewJob(WithText("Decide what to do based on the state"))
|
|
whatNext := types.NewJob(
|
|
types.WithText(innerMonologueTemplate),
|
|
types.WithReasoningCallback(a.options.reasoningCallback),
|
|
types.WithResultCallback(a.options.resultCallback),
|
|
)
|
|
a.consumeJob(whatNext, SystemRole)
|
|
|
|
xlog.Info("STOP -- Periodically run is done", "agent", a.Character.Name)
|
|
|
|
// Save results from state
|
|
|
|
// a.ResetConversation()
|
|
|
|
// doWork := NewJob(WithText("Select the tool to use based on your goal and the current state."))
|
|
// a.consumeJob(doWork, SystemRole)
|
|
|
|
// results := []string{}
|
|
// for _, v := range doWork.Result.State {
|
|
// results = append(results, v.Result)
|
|
// }
|
|
|
|
// a.ResetConversation()
|
|
|
|
// // Here the LLM could decide to do something based on the result of our automatic action
|
|
// evaluateAction := NewJob(
|
|
// WithText(
|
|
// `Evaluate the current situation and decide if we need to execute other tools (for instance to store results into permanent, or short memory).
|
|
// We have done the following actions:
|
|
// ` + strings.Join(results, "\n"),
|
|
// ))
|
|
// a.consumeJob(evaluateAction, SystemRole)
|
|
|
|
// a.ResetConversation()
|
|
}
|
|
|
|
func (a *Agent) Run() error {
|
|
// The agent run does two things:
|
|
// picks up requests from a queue
|
|
// and generates a response/perform actions
|
|
|
|
// It is also preemptive.
|
|
// That is, it can interrupt the current action
|
|
// if another one comes in.
|
|
|
|
// If there is no action, periodically evaluate if it has to do something on its own.
|
|
|
|
// Expose a REST API to interact with the agent to ask it things
|
|
|
|
//todoTimer := time.NewTicker(a.options.periodicRuns)
|
|
timer := time.NewTimer(a.options.periodicRuns)
|
|
for {
|
|
xlog.Debug("Agent is waiting for a job", "agent", a.Character.Name)
|
|
select {
|
|
case job := <-a.jobQueue:
|
|
a.loop(timer, job)
|
|
case <-a.context.Done():
|
|
// Agent has been canceled, return error
|
|
xlog.Warn("Agent has been canceled", "agent", a.Character.Name)
|
|
return ErrContextCanceled
|
|
case <-timer.C:
|
|
a.periodicallyRun(timer)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (a *Agent) loop(timer *time.Timer, job *types.Job) {
|
|
// Remember always to reset the timer - if we don't the agent will stop..
|
|
defer timer.Reset(a.options.periodicRuns)
|
|
// Consume the job and generate a response
|
|
// TODO: Give a short-term memory to the agent
|
|
// stop and drain the timer
|
|
if !timer.Stop() {
|
|
<-timer.C
|
|
}
|
|
xlog.Debug("Agent is consuming a job", "agent", a.Character.Name, "job", job)
|
|
a.StopAction()
|
|
a.consumeJob(job, UserRole)
|
|
}
|