feat(speech): enhance speech configuration and example integration
- Add comprehensive speech configuration in .env.example and app config - Update Docker speech Dockerfile for more flexible model handling - Create detailed README for speech-to-text examples - Implement example script demonstrating speech features - Improve speech service initialization and configuration management
This commit is contained in:
@@ -10,7 +10,7 @@ RUN apt-get update && apt-get install -y \
|
||||
|
||||
# Install fast-whisper and its dependencies
|
||||
RUN pip install --no-cache-dir torch torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN pip install --no-cache-dir fast-whisper
|
||||
RUN pip install --no-cache-dir faster-whisper
|
||||
|
||||
# Install wake word detection
|
||||
RUN pip install --no-cache-dir openwakeword pyaudio sounddevice
|
||||
@@ -19,11 +19,13 @@ RUN pip install --no-cache-dir openwakeword pyaudio sounddevice
|
||||
RUN mkdir -p /models /audio
|
||||
|
||||
# Download the base model by default
|
||||
RUN python -c "from faster_whisper import WhisperModel; WhisperModel.download_model('base.en', cache_dir='/models')"
|
||||
# The model will be downloaded automatically when first used
|
||||
ENV ASR_MODEL=base.en
|
||||
ENV ASR_MODEL_PATH=/models
|
||||
|
||||
# Download OpenWakeWord models
|
||||
RUN mkdir -p /models/wake_word && \
|
||||
python -c "import openwakeword; openwakeword.download_models(['hey_jarvis', 'ok_google', 'alexa'], '/models/wake_word')"
|
||||
# Create wake word model directory
|
||||
# Models will be downloaded automatically when first used
|
||||
RUN mkdir -p /models/wake_word
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
|
||||
@@ -7,6 +7,7 @@ import sounddevice as sd
|
||||
from openwakeword import Model
|
||||
from datetime import datetime
|
||||
import wave
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
# Configuration
|
||||
SAMPLE_RATE = 16000
|
||||
@@ -15,12 +16,29 @@ CHUNK_SIZE = 1024
|
||||
BUFFER_DURATION = 30 # seconds to keep in buffer
|
||||
DETECTION_THRESHOLD = 0.5
|
||||
|
||||
# Wake word models to use
|
||||
WAKE_WORDS = ["hey_jarvis", "ok_google", "alexa"]
|
||||
|
||||
# Initialize the ASR model
|
||||
asr_model = WhisperModel(
|
||||
model_size_or_path=os.environ.get('ASR_MODEL', 'base.en'),
|
||||
device="cpu",
|
||||
compute_type="int8",
|
||||
download_root=os.environ.get('ASR_MODEL_PATH', '/models')
|
||||
)
|
||||
|
||||
class AudioProcessor:
|
||||
def __init__(self):
|
||||
# Initialize wake word detection model
|
||||
self.wake_word_model = Model(
|
||||
wakeword_models=["hey_jarvis", "ok_google", "alexa"],
|
||||
model_path=os.environ.get('WAKEWORD_MODEL_PATH', '/models/wake_word')
|
||||
custom_model_paths=None, # Use default models
|
||||
inference_framework="onnx" # Use ONNX for better performance
|
||||
)
|
||||
|
||||
# Pre-load the wake word models
|
||||
for wake_word in WAKE_WORDS:
|
||||
self.wake_word_model.add_model(wake_word)
|
||||
|
||||
self.audio_buffer = queue.Queue()
|
||||
self.recording = False
|
||||
self.buffer = np.zeros(SAMPLE_RATE * BUFFER_DURATION)
|
||||
@@ -46,16 +64,16 @@ class AudioProcessor:
|
||||
prediction = self.wake_word_model.predict(audio_data)
|
||||
|
||||
# Check if wake word detected
|
||||
for wake_word, score in prediction.items():
|
||||
if score > DETECTION_THRESHOLD:
|
||||
print(f"Wake word detected: {wake_word} (confidence: {score:.2f})")
|
||||
self.save_audio_segment()
|
||||
for wake_word in WAKE_WORDS:
|
||||
if prediction[wake_word] > DETECTION_THRESHOLD:
|
||||
print(f"Wake word detected: {wake_word} (confidence: {prediction[wake_word]:.2f})")
|
||||
self.save_audio_segment(wake_word)
|
||||
break
|
||||
|
||||
def save_audio_segment(self):
|
||||
def save_audio_segment(self, wake_word):
|
||||
"""Save the audio buffer when wake word is detected"""
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"/audio/wake_word_{timestamp}.wav"
|
||||
filename = f"/audio/wake_word_{wake_word}_{timestamp}.wav"
|
||||
|
||||
# Save the audio buffer to a WAV file
|
||||
with wave.open(filename, 'wb') as wf:
|
||||
@@ -68,28 +86,80 @@ class AudioProcessor:
|
||||
wf.writeframes(audio_data.tobytes())
|
||||
|
||||
print(f"Saved audio segment to {filename}")
|
||||
|
||||
# Write metadata
|
||||
metadata = {
|
||||
"timestamp": timestamp,
|
||||
"sample_rate": SAMPLE_RATE,
|
||||
"channels": CHANNELS,
|
||||
"duration": BUFFER_DURATION
|
||||
}
|
||||
|
||||
with open(f"{filename}.json", 'w') as f:
|
||||
json.dump(metadata, f, indent=2)
|
||||
|
||||
# Transcribe the audio
|
||||
try:
|
||||
segments, info = asr_model.transcribe(
|
||||
filename,
|
||||
language="en",
|
||||
beam_size=5,
|
||||
temperature=0
|
||||
)
|
||||
|
||||
# Format the transcription result
|
||||
result = {
|
||||
"text": " ".join(segment.text for segment in segments),
|
||||
"segments": [
|
||||
{
|
||||
"text": segment.text,
|
||||
"start": segment.start,
|
||||
"end": segment.end,
|
||||
"confidence": segment.confidence
|
||||
}
|
||||
for segment in segments
|
||||
]
|
||||
}
|
||||
|
||||
# Save metadata and transcription
|
||||
metadata = {
|
||||
"timestamp": timestamp,
|
||||
"wake_word": wake_word,
|
||||
"wake_word_confidence": float(prediction[wake_word]),
|
||||
"sample_rate": SAMPLE_RATE,
|
||||
"channels": CHANNELS,
|
||||
"duration": BUFFER_DURATION,
|
||||
"transcription": result
|
||||
}
|
||||
|
||||
with open(f"{filename}.json", 'w') as f:
|
||||
json.dump(metadata, f, indent=2)
|
||||
|
||||
print("\nTranscription result:")
|
||||
print(f"Text: {result['text']}")
|
||||
print("\nSegments:")
|
||||
for segment in result["segments"]:
|
||||
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['confidence']:.2%})")
|
||||
print(f'"{segment["text"]}"')
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error during transcription: {e}")
|
||||
metadata = {
|
||||
"timestamp": timestamp,
|
||||
"wake_word": wake_word,
|
||||
"wake_word_confidence": float(prediction[wake_word]),
|
||||
"sample_rate": SAMPLE_RATE,
|
||||
"channels": CHANNELS,
|
||||
"duration": BUFFER_DURATION,
|
||||
"error": str(e)
|
||||
}
|
||||
with open(f"{filename}.json", 'w') as f:
|
||||
json.dump(metadata, f, indent=2)
|
||||
|
||||
def start(self):
|
||||
"""Start audio processing"""
|
||||
try:
|
||||
print("Initializing wake word detection...")
|
||||
print(f"Loaded wake words: {', '.join(WAKE_WORDS)}")
|
||||
|
||||
with sd.InputStream(
|
||||
channels=CHANNELS,
|
||||
samplerate=SAMPLE_RATE,
|
||||
blocksize=CHUNK_SIZE,
|
||||
callback=self.audio_callback
|
||||
):
|
||||
print("Wake word detection started. Listening...")
|
||||
print("\nWake word detection started. Listening...")
|
||||
print("Press Ctrl+C to stop")
|
||||
|
||||
while True:
|
||||
sd.sleep(1000) # Sleep for 1 second
|
||||
|
||||
@@ -99,6 +169,5 @@ class AudioProcessor:
|
||||
print(f"Error in audio processing: {e}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("Initializing wake word detection...")
|
||||
processor = AudioProcessor()
|
||||
processor.start()
|
||||
Reference in New Issue
Block a user