docs: Refactor documentation structure and enhance project overview
- Update MkDocs configuration with streamlined navigation and theme improvements - Revise README with comprehensive project introduction and key features - Add new documentation pages for NLP, custom prompts, and extras - Enhance index page with system architecture diagram and getting started guide - Improve overall documentation clarity and organization
This commit is contained in:
196
docs/nlp.md
Normal file
196
docs/nlp.md
Normal file
@@ -0,0 +1,196 @@
|
||||
# Natural Language Processing Guide 🤖
|
||||
|
||||
## Overview
|
||||
|
||||
My MCP Server includes powerful Natural Language Processing (NLP) capabilities powered by various AI models. This enables intelligent automation analysis, natural language control, and context-aware interactions with your Home Assistant setup.
|
||||
|
||||
## Available Models 🎯
|
||||
|
||||
### OpenAI Models
|
||||
- **GPT-4**
|
||||
- Best for complex automation analysis
|
||||
- Natural language understanding
|
||||
- Context window: 8k-32k tokens
|
||||
- Recommended for: Automation analysis, complex queries
|
||||
|
||||
- **GPT-3.5-Turbo**
|
||||
- Faster response times
|
||||
- More cost-effective
|
||||
- Context window: 4k tokens
|
||||
- Recommended for: Quick commands, basic analysis
|
||||
|
||||
### Claude Models
|
||||
- **Claude 2**
|
||||
- Excellent code analysis
|
||||
- Large context window (100k tokens)
|
||||
- Strong system understanding
|
||||
- Recommended for: Deep automation analysis
|
||||
|
||||
### DeepSeek Models
|
||||
- **DeepSeek-Coder**
|
||||
- Specialized in code understanding
|
||||
- Efficient for automation rules
|
||||
- Context window: 8k tokens
|
||||
- Recommended for: Code generation, rule analysis
|
||||
|
||||
## Configuration ⚙️
|
||||
|
||||
```bash
|
||||
# AI Model Configuration
|
||||
PROCESSOR_TYPE=openai # openai, claude, or deepseek
|
||||
OPENAI_MODEL=gpt-3.5-turbo # or gpt-4, gpt-4-32k
|
||||
OPENAI_API_KEY=your_key_here
|
||||
|
||||
# Optional: DeepSeek Configuration
|
||||
DEEPSEEK_API_KEY=your_key_here
|
||||
DEEPSEEK_BASE_URL=https://api.deepseek.com/v1
|
||||
|
||||
# Analysis Settings
|
||||
ANALYSIS_TIMEOUT=30000 # Timeout in milliseconds
|
||||
MAX_RETRIES=3 # Number of retries on failure
|
||||
```
|
||||
|
||||
## Usage Examples 💡
|
||||
|
||||
### 1. Automation Analysis
|
||||
|
||||
```bash
|
||||
# Analyze an automation rule
|
||||
bun run analyze-automation path/to/automation.yaml
|
||||
|
||||
# Example output:
|
||||
# "This automation triggers on motion detection and turns on lights.
|
||||
# Potential issues:
|
||||
# - No timeout for light turn-off
|
||||
# - Missing condition for ambient light level"
|
||||
```
|
||||
|
||||
### 2. Natural Language Commands
|
||||
|
||||
```typescript
|
||||
// Send a natural language command
|
||||
const response = await fetch('http://localhost:3000/api/nlp/command', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
command: "Turn on the living room lights and set them to warm white"
|
||||
})
|
||||
});
|
||||
```
|
||||
|
||||
### 3. Context-Aware Queries
|
||||
|
||||
```typescript
|
||||
// Query with context
|
||||
const response = await fetch('http://localhost:3000/api/nlp/query', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
query: "What's the temperature trend in the bedroom?",
|
||||
context: {
|
||||
timeframe: "last_24h",
|
||||
include_humidity: true
|
||||
}
|
||||
})
|
||||
});
|
||||
```
|
||||
|
||||
## Custom Prompts 📝
|
||||
|
||||
You can customize the AI's behavior by creating custom prompts. See [Custom Prompts Guide](prompts.md) for details.
|
||||
|
||||
Example custom prompt:
|
||||
```yaml
|
||||
name: energy_analysis
|
||||
description: Analyze home energy usage patterns
|
||||
prompt: |
|
||||
Analyze the following energy usage data and provide:
|
||||
1. Peak usage patterns
|
||||
2. Potential optimizations
|
||||
3. Comparison with typical usage
|
||||
4. Cost-saving recommendations
|
||||
|
||||
Context: {context}
|
||||
Data: {data}
|
||||
```
|
||||
|
||||
## Best Practices 🎯
|
||||
|
||||
1. **Model Selection**
|
||||
- Use GPT-3.5-Turbo for quick queries
|
||||
- Use GPT-4 for complex analysis
|
||||
- Use Claude for large context analysis
|
||||
- Use DeepSeek for code-heavy tasks
|
||||
|
||||
2. **Performance Optimization**
|
||||
- Cache frequent queries
|
||||
- Use streaming for long responses
|
||||
- Implement retry logic for API calls
|
||||
|
||||
3. **Cost Management**
|
||||
- Monitor API usage
|
||||
- Implement rate limiting
|
||||
- Cache responses where appropriate
|
||||
|
||||
4. **Error Handling**
|
||||
- Implement fallback models
|
||||
- Handle API timeouts gracefully
|
||||
- Log failed queries for analysis
|
||||
|
||||
## Advanced Features 🚀
|
||||
|
||||
### 1. Chain of Thought Analysis
|
||||
```typescript
|
||||
const result = await analyzeWithCoT({
|
||||
query: "Optimize my morning routine automation",
|
||||
steps: ["Parse current automation", "Analyze patterns", "Suggest improvements"]
|
||||
});
|
||||
```
|
||||
|
||||
### 2. Multi-Model Analysis
|
||||
```typescript
|
||||
const results = await analyzeWithMultiModel({
|
||||
query: "Security system optimization",
|
||||
models: ["gpt-4", "claude-2"],
|
||||
compareResults: true
|
||||
});
|
||||
```
|
||||
|
||||
### 3. Contextual Memory
|
||||
```typescript
|
||||
const memory = new ContextualMemory({
|
||||
timeframe: "24h",
|
||||
maxItems: 100
|
||||
});
|
||||
|
||||
await memory.add("User typically arrives home at 17:30");
|
||||
```
|
||||
|
||||
## Troubleshooting 🔧
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Slow Response Times**
|
||||
- Check model selection
|
||||
- Verify API rate limits
|
||||
- Consider caching
|
||||
|
||||
2. **Poor Analysis Quality**
|
||||
- Review prompt design
|
||||
- Check context window limits
|
||||
- Consider using a more capable model
|
||||
|
||||
3. **API Errors**
|
||||
- Verify API keys
|
||||
- Check network connectivity
|
||||
- Review rate limits
|
||||
|
||||
## API Reference 📚
|
||||
|
||||
See [API Documentation](api.md) for detailed endpoint specifications.
|
||||
Reference in New Issue
Block a user