docs: Refactor documentation structure and enhance project overview

- Update MkDocs configuration with streamlined navigation and theme improvements
- Revise README with comprehensive project introduction and key features
- Add new documentation pages for NLP, custom prompts, and extras
- Enhance index page with system architecture diagram and getting started guide
- Improve overall documentation clarity and organization
This commit is contained in:
jango-blockchained
2025-02-06 10:06:27 +01:00
parent 4db60b6a6f
commit 61e930bf8a
6 changed files with 886 additions and 226 deletions

196
docs/nlp.md Normal file
View File

@@ -0,0 +1,196 @@
# Natural Language Processing Guide 🤖
## Overview
My MCP Server includes powerful Natural Language Processing (NLP) capabilities powered by various AI models. This enables intelligent automation analysis, natural language control, and context-aware interactions with your Home Assistant setup.
## Available Models 🎯
### OpenAI Models
- **GPT-4**
- Best for complex automation analysis
- Natural language understanding
- Context window: 8k-32k tokens
- Recommended for: Automation analysis, complex queries
- **GPT-3.5-Turbo**
- Faster response times
- More cost-effective
- Context window: 4k tokens
- Recommended for: Quick commands, basic analysis
### Claude Models
- **Claude 2**
- Excellent code analysis
- Large context window (100k tokens)
- Strong system understanding
- Recommended for: Deep automation analysis
### DeepSeek Models
- **DeepSeek-Coder**
- Specialized in code understanding
- Efficient for automation rules
- Context window: 8k tokens
- Recommended for: Code generation, rule analysis
## Configuration ⚙️
```bash
# AI Model Configuration
PROCESSOR_TYPE=openai # openai, claude, or deepseek
OPENAI_MODEL=gpt-3.5-turbo # or gpt-4, gpt-4-32k
OPENAI_API_KEY=your_key_here
# Optional: DeepSeek Configuration
DEEPSEEK_API_KEY=your_key_here
DEEPSEEK_BASE_URL=https://api.deepseek.com/v1
# Analysis Settings
ANALYSIS_TIMEOUT=30000 # Timeout in milliseconds
MAX_RETRIES=3 # Number of retries on failure
```
## Usage Examples 💡
### 1. Automation Analysis
```bash
# Analyze an automation rule
bun run analyze-automation path/to/automation.yaml
# Example output:
# "This automation triggers on motion detection and turns on lights.
# Potential issues:
# - No timeout for light turn-off
# - Missing condition for ambient light level"
```
### 2. Natural Language Commands
```typescript
// Send a natural language command
const response = await fetch('http://localhost:3000/api/nlp/command', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${token}`
},
body: JSON.stringify({
command: "Turn on the living room lights and set them to warm white"
})
});
```
### 3. Context-Aware Queries
```typescript
// Query with context
const response = await fetch('http://localhost:3000/api/nlp/query', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${token}`
},
body: JSON.stringify({
query: "What's the temperature trend in the bedroom?",
context: {
timeframe: "last_24h",
include_humidity: true
}
})
});
```
## Custom Prompts 📝
You can customize the AI's behavior by creating custom prompts. See [Custom Prompts Guide](prompts.md) for details.
Example custom prompt:
```yaml
name: energy_analysis
description: Analyze home energy usage patterns
prompt: |
Analyze the following energy usage data and provide:
1. Peak usage patterns
2. Potential optimizations
3. Comparison with typical usage
4. Cost-saving recommendations
Context: {context}
Data: {data}
```
## Best Practices 🎯
1. **Model Selection**
- Use GPT-3.5-Turbo for quick queries
- Use GPT-4 for complex analysis
- Use Claude for large context analysis
- Use DeepSeek for code-heavy tasks
2. **Performance Optimization**
- Cache frequent queries
- Use streaming for long responses
- Implement retry logic for API calls
3. **Cost Management**
- Monitor API usage
- Implement rate limiting
- Cache responses where appropriate
4. **Error Handling**
- Implement fallback models
- Handle API timeouts gracefully
- Log failed queries for analysis
## Advanced Features 🚀
### 1. Chain of Thought Analysis
```typescript
const result = await analyzeWithCoT({
query: "Optimize my morning routine automation",
steps: ["Parse current automation", "Analyze patterns", "Suggest improvements"]
});
```
### 2. Multi-Model Analysis
```typescript
const results = await analyzeWithMultiModel({
query: "Security system optimization",
models: ["gpt-4", "claude-2"],
compareResults: true
});
```
### 3. Contextual Memory
```typescript
const memory = new ContextualMemory({
timeframe: "24h",
maxItems: 100
});
await memory.add("User typically arrives home at 17:30");
```
## Troubleshooting 🔧
### Common Issues
1. **Slow Response Times**
- Check model selection
- Verify API rate limits
- Consider caching
2. **Poor Analysis Quality**
- Review prompt design
- Check context window limits
- Consider using a more capable model
3. **API Errors**
- Verify API keys
- Check network connectivity
- Review rate limits
## API Reference 📚
See [API Documentation](api.md) for detailed endpoint specifications.