Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cc9eede856 |
94
README.md
94
README.md
@@ -12,12 +12,22 @@ MCP (Model Context Protocol) Server is a lightweight integration tool for Home A
|
||||
- 📡 WebSocket/Server-Sent Events (SSE) for state updates
|
||||
- 🤖 Simple automation rule management
|
||||
- 🔐 JWT-based authentication
|
||||
- 🎤 Real-time device control and monitoring
|
||||
- 🎤 Server-Sent Events (SSE) for live updates
|
||||
- 🎤 Comprehensive logging
|
||||
- 🎤 Optional speech features:
|
||||
- 🎤 Wake word detection ("hey jarvis", "ok google", "alexa")
|
||||
- 🎤 Speech-to-text using fast-whisper
|
||||
- 🎤 Multiple language support
|
||||
- 🎤 GPU acceleration support
|
||||
|
||||
## Prerequisites 📋
|
||||
|
||||
- 🚀 Bun runtime (v1.0.26+)
|
||||
- 🏡 Home Assistant instance
|
||||
- 🐳 Docker (optional, recommended for deployment)
|
||||
- 🐳 Docker (optional, recommended for deployment and speech features)
|
||||
- 🖥️ Node.js 18+ (optional, for speech features)
|
||||
- 🖥️ NVIDIA GPU with CUDA support (optional, for faster speech processing)
|
||||
|
||||
## Installation 🛠️
|
||||
|
||||
@@ -30,7 +40,7 @@ cd homeassistant-mcp
|
||||
|
||||
# Copy and edit environment configuration
|
||||
cp .env.example .env
|
||||
# Edit .env with your Home Assistant credentials
|
||||
# Edit .env with your Home Assistant credentials and speech features settings
|
||||
|
||||
# Build and start containers
|
||||
docker compose up -d --build
|
||||
@@ -79,33 +89,69 @@ ws.onmessage = (event) => {
|
||||
};
|
||||
```
|
||||
|
||||
## Current Limitations ⚠️
|
||||
## Speech Features (Optional)
|
||||
|
||||
- 🎙️ Basic voice command support (work in progress)
|
||||
- 🧠 Limited advanced NLP capabilities
|
||||
- 🔗 Minimal third-party device integration
|
||||
- 🐛 Early-stage error handling
|
||||
The MCP Server includes optional speech processing capabilities:
|
||||
|
||||
## Contributing 🤝
|
||||
### Prerequisites
|
||||
1. Docker installed and running
|
||||
2. NVIDIA GPU with CUDA support (optional)
|
||||
3. At least 4GB RAM (8GB+ recommended for larger models)
|
||||
|
||||
1. Fork the repository
|
||||
2. Create a feature branch:
|
||||
```bash
|
||||
git checkout -b feature/your-feature
|
||||
```
|
||||
3. Make your changes
|
||||
4. Run tests:
|
||||
```bash
|
||||
bun test
|
||||
```
|
||||
5. Submit a pull request
|
||||
### Setup
|
||||
|
||||
## Roadmap 🗺️
|
||||
1. Enable speech features in your .env:
|
||||
```bash
|
||||
ENABLE_SPEECH_FEATURES=true
|
||||
ENABLE_WAKE_WORD=true
|
||||
ENABLE_SPEECH_TO_TEXT=true
|
||||
WHISPER_MODEL_PATH=/models
|
||||
WHISPER_MODEL_TYPE=base
|
||||
```
|
||||
|
||||
- 🎤 Enhance voice command processing
|
||||
- 🔌 Improve device compatibility
|
||||
- 🤖 Expand automation capabilities
|
||||
- 🛡️ Implement more robust error handling
|
||||
2. Start the speech services:
|
||||
```bash
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
### Available Models
|
||||
|
||||
Choose a model based on your needs:
|
||||
- `tiny.en`: Fastest, basic accuracy
|
||||
- `base.en`: Good balance (recommended)
|
||||
- `small.en`: Better accuracy, slower
|
||||
- `medium.en`: High accuracy, resource intensive
|
||||
- `large-v2`: Best accuracy, very resource intensive
|
||||
|
||||
### Usage
|
||||
|
||||
1. Wake word detection listens for:
|
||||
- "hey jarvis"
|
||||
- "ok google"
|
||||
- "alexa"
|
||||
|
||||
2. After wake word detection:
|
||||
- Audio is automatically captured
|
||||
- Speech is transcribed
|
||||
- Commands are processed
|
||||
|
||||
3. Manual transcription is also available:
|
||||
```typescript
|
||||
const speech = speechService.getSpeechToText();
|
||||
const text = await speech.transcribe(audioBuffer);
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
See [Configuration Guide](docs/configuration.md) for detailed settings.
|
||||
|
||||
## API Documentation
|
||||
|
||||
See [API Documentation](docs/api/index.md) for available endpoints.
|
||||
|
||||
## Development
|
||||
|
||||
See [Development Guide](docs/development/index.md) for contribution guidelines.
|
||||
|
||||
## License 📄
|
||||
|
||||
|
||||
@@ -34,6 +34,14 @@ JWT_SECRET=your_secret_key
|
||||
- `MAX_CLIENTS`: Maximum concurrent clients (default: 1000)
|
||||
- `PING_INTERVAL`: Keep-alive ping interval in ms (default: 30000)
|
||||
|
||||
### Speech Features (Optional)
|
||||
- `ENABLE_SPEECH_FEATURES`: Enable speech processing features (default: false)
|
||||
- `ENABLE_WAKE_WORD`: Enable wake word detection (default: false)
|
||||
- `ENABLE_SPEECH_TO_TEXT`: Enable speech-to-text conversion (default: false)
|
||||
- `WHISPER_MODEL_PATH`: Path to Whisper models directory (default: /models)
|
||||
- `WHISPER_MODEL_TYPE`: Whisper model type (default: base)
|
||||
- Available models: tiny.en, base.en, small.en, medium.en, large-v2
|
||||
|
||||
## Environment Variables
|
||||
|
||||
All configuration is managed through environment variables:
|
||||
@@ -57,6 +65,13 @@ LOG_MAX_SIZE=20m
|
||||
LOG_MAX_DAYS=14d
|
||||
LOG_COMPRESS=true
|
||||
LOG_REQUESTS=true
|
||||
|
||||
# Speech Features (Optional)
|
||||
ENABLE_SPEECH_FEATURES=false
|
||||
ENABLE_WAKE_WORD=false
|
||||
ENABLE_SPEECH_TO_TEXT=false
|
||||
WHISPER_MODEL_PATH=/models
|
||||
WHISPER_MODEL_TYPE=base
|
||||
```
|
||||
|
||||
## Advanced Configuration
|
||||
@@ -86,6 +101,26 @@ LOGGING: {
|
||||
}
|
||||
```
|
||||
|
||||
### Speech-to-Text Configuration
|
||||
When speech features are enabled, you can configure the following options:
|
||||
|
||||
```typescript
|
||||
SPEECH: {
|
||||
ENABLED: false, // Master switch for all speech features
|
||||
WAKE_WORD_ENABLED: false, // Enable wake word detection
|
||||
SPEECH_TO_TEXT_ENABLED: false, // Enable speech-to-text
|
||||
WHISPER_MODEL_PATH: "/models", // Path to Whisper models
|
||||
WHISPER_MODEL_TYPE: "base", // Model type to use
|
||||
}
|
||||
```
|
||||
|
||||
Available Whisper models:
|
||||
- `tiny.en`: Fastest, lowest accuracy
|
||||
- `base.en`: Good balance of speed and accuracy
|
||||
- `small.en`: Better accuracy, slower
|
||||
- `medium.en`: High accuracy, much slower
|
||||
- `large-v2`: Best accuracy, very slow
|
||||
|
||||
For production deployments, we recommend using system tools like `logrotate` for log management.
|
||||
|
||||
Example logrotate configuration (`/etc/logrotate.d/mcp-server`):
|
||||
@@ -109,13 +144,15 @@ Example logrotate configuration (`/etc/logrotate.d/mcp-server`):
|
||||
4. Enable SSL/TLS in production (preferably via reverse proxy)
|
||||
5. Monitor log files for issues
|
||||
6. Regularly rotate logs in production
|
||||
7. Start with smaller Whisper models and upgrade if needed
|
||||
8. Consider GPU acceleration for larger Whisper models
|
||||
|
||||
## Validation
|
||||
|
||||
The server validates configuration on startup using Zod schemas:
|
||||
- Required fields are checked (e.g., HASS_TOKEN)
|
||||
- Value types are verified
|
||||
- Enums are validated (e.g., LOG_LEVEL)
|
||||
- Enums are validated (e.g., LOG_LEVEL, WHISPER_MODEL_TYPE)
|
||||
- Default values are applied when not specified
|
||||
|
||||
## Troubleshooting
|
||||
@@ -125,5 +162,109 @@ Common configuration issues:
|
||||
2. Invalid environment variable values
|
||||
3. Permission issues with log directories
|
||||
4. Rate limiting too restrictive
|
||||
5. Speech model loading failures
|
||||
6. Docker not available for speech features
|
||||
7. Insufficient system resources for larger models
|
||||
|
||||
See the [Troubleshooting Guide](troubleshooting.md) for solutions.
|
||||
|
||||
# Configuration Guide
|
||||
|
||||
This document describes all available configuration options for the Home Assistant MCP Server.
|
||||
|
||||
## Environment Variables
|
||||
|
||||
### Required Settings
|
||||
|
||||
```bash
|
||||
# Server Configuration
|
||||
PORT=3000 # Server port
|
||||
HOST=localhost # Server host
|
||||
|
||||
# Home Assistant
|
||||
HASS_URL=http://localhost:8123 # Home Assistant URL
|
||||
HASS_TOKEN=your_token # Long-lived access token
|
||||
|
||||
# Security
|
||||
JWT_SECRET=your_secret # JWT signing secret
|
||||
```
|
||||
|
||||
### Optional Settings
|
||||
|
||||
```bash
|
||||
# Rate Limiting
|
||||
RATE_LIMIT_WINDOW=60000 # Time window in ms (default: 60000)
|
||||
RATE_LIMIT_MAX=100 # Max requests per window (default: 100)
|
||||
|
||||
# Logging
|
||||
LOG_LEVEL=info # debug, info, warn, error (default: info)
|
||||
LOG_DIR=logs # Log directory (default: logs)
|
||||
LOG_MAX_SIZE=10m # Max log file size (default: 10m)
|
||||
LOG_MAX_FILES=5 # Max number of log files (default: 5)
|
||||
|
||||
# WebSocket/SSE
|
||||
WS_HEARTBEAT=30000 # WebSocket heartbeat interval in ms (default: 30000)
|
||||
SSE_RETRY=3000 # SSE retry interval in ms (default: 3000)
|
||||
|
||||
# Speech Features
|
||||
ENABLE_SPEECH_FEATURES=false # Enable speech processing (default: false)
|
||||
ENABLE_WAKE_WORD=false # Enable wake word detection (default: false)
|
||||
ENABLE_SPEECH_TO_TEXT=false # Enable speech-to-text (default: false)
|
||||
|
||||
# Speech Model Configuration
|
||||
WHISPER_MODEL_PATH=/models # Path to whisper models (default: /models)
|
||||
WHISPER_MODEL_TYPE=base # Model type: tiny|base|small|medium|large-v2 (default: base)
|
||||
WHISPER_LANGUAGE=en # Primary language (default: en)
|
||||
WHISPER_TASK=transcribe # Task type: transcribe|translate (default: transcribe)
|
||||
WHISPER_DEVICE=cuda # Processing device: cpu|cuda (default: cuda if available, else cpu)
|
||||
|
||||
# Wake Word Configuration
|
||||
WAKE_WORDS=hey jarvis,ok google,alexa # Comma-separated wake words (default: hey jarvis)
|
||||
WAKE_WORD_SENSITIVITY=0.5 # Detection sensitivity 0-1 (default: 0.5)
|
||||
```
|
||||
|
||||
## Speech Features
|
||||
|
||||
### Model Selection
|
||||
|
||||
Choose a model based on your needs:
|
||||
|
||||
| Model | Size | Memory Required | Speed | Accuracy |
|
||||
|------------|-------|-----------------|-------|----------|
|
||||
| tiny.en | 75MB | 1GB | Fast | Basic |
|
||||
| base.en | 150MB | 2GB | Good | Good |
|
||||
| small.en | 500MB | 4GB | Med | Better |
|
||||
| medium.en | 1.5GB | 8GB | Slow | High |
|
||||
| large-v2 | 3GB | 16GB | Slow | Best |
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
When `WHISPER_DEVICE=cuda`:
|
||||
- NVIDIA GPU with CUDA support required
|
||||
- Significantly faster processing
|
||||
- Higher memory requirements
|
||||
|
||||
### Wake Word Detection
|
||||
|
||||
- Multiple wake words supported via comma-separated list
|
||||
- Adjustable sensitivity (0-1):
|
||||
- Lower values: Fewer false positives, may miss some triggers
|
||||
- Higher values: More responsive, may have false triggers
|
||||
- Default (0.5): Balanced detection
|
||||
|
||||
### Best Practices
|
||||
|
||||
1. Model Selection:
|
||||
- Start with `base.en` model
|
||||
- Upgrade if better accuracy needed
|
||||
- Downgrade if performance issues
|
||||
|
||||
2. Resource Management:
|
||||
- Monitor memory usage
|
||||
- Use GPU acceleration when available
|
||||
- Consider model size vs available resources
|
||||
|
||||
3. Wake Word Configuration:
|
||||
- Use distinct wake words
|
||||
- Adjust sensitivity based on environment
|
||||
- Limit number of wake words for better performance
|
||||
212
docs/features/speech.md
Normal file
212
docs/features/speech.md
Normal file
@@ -0,0 +1,212 @@
|
||||
# Speech Features
|
||||
|
||||
The Home Assistant MCP Server includes powerful speech processing capabilities powered by fast-whisper and custom wake word detection. This guide explains how to set up and use these features effectively.
|
||||
|
||||
## Overview
|
||||
|
||||
The speech processing system consists of two main components:
|
||||
1. Wake Word Detection - Listens for specific trigger phrases
|
||||
2. Speech-to-Text - Transcribes spoken commands using fast-whisper
|
||||
|
||||
## Setup
|
||||
|
||||
### Prerequisites
|
||||
|
||||
1. Docker environment:
|
||||
```bash
|
||||
docker --version # Should be 20.10.0 or higher
|
||||
```
|
||||
|
||||
2. For GPU acceleration:
|
||||
- NVIDIA GPU with CUDA support
|
||||
- NVIDIA Container Toolkit installed
|
||||
- NVIDIA drivers 450.80.02 or higher
|
||||
|
||||
### Installation
|
||||
|
||||
1. Enable speech features in your `.env`:
|
||||
```bash
|
||||
ENABLE_SPEECH_FEATURES=true
|
||||
ENABLE_WAKE_WORD=true
|
||||
ENABLE_SPEECH_TO_TEXT=true
|
||||
```
|
||||
|
||||
2. Configure model settings:
|
||||
```bash
|
||||
WHISPER_MODEL_PATH=/models
|
||||
WHISPER_MODEL_TYPE=base
|
||||
WHISPER_LANGUAGE=en
|
||||
WHISPER_TASK=transcribe
|
||||
WHISPER_DEVICE=cuda # or cpu
|
||||
```
|
||||
|
||||
3. Start the services:
|
||||
```bash
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
### Wake Word Detection
|
||||
|
||||
The wake word detector continuously listens for configured trigger phrases. Default wake words:
|
||||
- "hey jarvis"
|
||||
- "ok google"
|
||||
- "alexa"
|
||||
|
||||
Custom wake words can be configured:
|
||||
```bash
|
||||
WAKE_WORDS=computer,jarvis,assistant
|
||||
```
|
||||
|
||||
When a wake word is detected:
|
||||
1. The system starts recording audio
|
||||
2. Audio is processed through the speech-to-text pipeline
|
||||
3. The resulting command is processed by the server
|
||||
|
||||
### Speech-to-Text
|
||||
|
||||
#### Automatic Transcription
|
||||
|
||||
After wake word detection:
|
||||
1. Audio is automatically captured (default: 5 seconds)
|
||||
2. The audio is transcribed using the configured whisper model
|
||||
3. The transcribed text is processed as a command
|
||||
|
||||
#### Manual Transcription
|
||||
|
||||
You can also manually transcribe audio using the API:
|
||||
|
||||
```typescript
|
||||
// Using the TypeScript client
|
||||
import { SpeechService } from '@ha-mcp/client';
|
||||
|
||||
const speech = new SpeechService();
|
||||
|
||||
// Transcribe from audio buffer
|
||||
const buffer = await getAudioBuffer();
|
||||
const text = await speech.transcribe(buffer);
|
||||
|
||||
// Transcribe from file
|
||||
const text = await speech.transcribeFile('command.wav');
|
||||
```
|
||||
|
||||
```javascript
|
||||
// Using the REST API
|
||||
POST /api/speech/transcribe
|
||||
Content-Type: multipart/form-data
|
||||
|
||||
file: <audio file>
|
||||
```
|
||||
|
||||
### Event Handling
|
||||
|
||||
The system emits various events during speech processing:
|
||||
|
||||
```typescript
|
||||
speech.on('wakeWord', (word: string) => {
|
||||
console.log(`Wake word detected: ${word}`);
|
||||
});
|
||||
|
||||
speech.on('listening', () => {
|
||||
console.log('Listening for command...');
|
||||
});
|
||||
|
||||
speech.on('transcribing', () => {
|
||||
console.log('Processing speech...');
|
||||
});
|
||||
|
||||
speech.on('transcribed', (text: string) => {
|
||||
console.log(`Transcribed text: ${text}`);
|
||||
});
|
||||
|
||||
speech.on('error', (error: Error) => {
|
||||
console.error('Speech processing error:', error);
|
||||
});
|
||||
```
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### Model Selection
|
||||
|
||||
Choose an appropriate model based on your needs:
|
||||
|
||||
1. Resource-constrained environments:
|
||||
- Use `tiny.en` or `base.en`
|
||||
- Run on CPU if GPU unavailable
|
||||
- Limit concurrent processing
|
||||
|
||||
2. High-accuracy requirements:
|
||||
- Use `small.en` or `medium.en`
|
||||
- Enable GPU acceleration
|
||||
- Increase audio quality
|
||||
|
||||
3. Production environments:
|
||||
- Use `base.en` or `small.en`
|
||||
- Enable GPU acceleration
|
||||
- Configure appropriate timeouts
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
When using GPU acceleration:
|
||||
|
||||
1. Monitor GPU memory usage:
|
||||
```bash
|
||||
nvidia-smi -l 1
|
||||
```
|
||||
|
||||
2. Adjust model size if needed:
|
||||
```bash
|
||||
WHISPER_MODEL_TYPE=small # Decrease if GPU memory limited
|
||||
```
|
||||
|
||||
3. Configure processing device:
|
||||
```bash
|
||||
WHISPER_DEVICE=cuda # Use GPU
|
||||
WHISPER_DEVICE=cpu # Use CPU if GPU unavailable
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. Wake word detection not working:
|
||||
- Check microphone permissions
|
||||
- Adjust `WAKE_WORD_SENSITIVITY`
|
||||
- Verify wake words configuration
|
||||
|
||||
2. Poor transcription quality:
|
||||
- Check audio input quality
|
||||
- Try a larger model
|
||||
- Verify language settings
|
||||
|
||||
3. Performance issues:
|
||||
- Monitor resource usage
|
||||
- Consider smaller model
|
||||
- Check GPU acceleration status
|
||||
|
||||
### Logging
|
||||
|
||||
Enable debug logging for detailed information:
|
||||
```bash
|
||||
LOG_LEVEL=debug
|
||||
```
|
||||
|
||||
Speech-specific logs will be tagged with `[SPEECH]` prefix.
|
||||
|
||||
## Security Considerations
|
||||
|
||||
1. Audio Privacy:
|
||||
- Audio is processed locally
|
||||
- No data sent to external services
|
||||
- Temporary files automatically cleaned
|
||||
|
||||
2. Access Control:
|
||||
- Speech endpoints require authentication
|
||||
- Rate limiting applies to transcription
|
||||
- Configurable command restrictions
|
||||
|
||||
3. Resource Protection:
|
||||
- Timeouts prevent hanging
|
||||
- Memory limits enforced
|
||||
- Graceful error handling
|
||||
Reference in New Issue
Block a user