import os import json import queue import threading import numpy as np import sounddevice as sd from openwakeword import Model from datetime import datetime import wave # Configuration SAMPLE_RATE = 16000 CHANNELS = 1 CHUNK_SIZE = 1024 BUFFER_DURATION = 30 # seconds to keep in buffer DETECTION_THRESHOLD = 0.5 class AudioProcessor: def __init__(self): self.wake_word_model = Model( wakeword_models=["hey_jarvis", "ok_google", "alexa"], model_path=os.environ.get('WAKEWORD_MODEL_PATH', '/models/wake_word') ) self.audio_buffer = queue.Queue() self.recording = False self.buffer = np.zeros(SAMPLE_RATE * BUFFER_DURATION) self.buffer_lock = threading.Lock() def audio_callback(self, indata, frames, time, status): """Callback for audio input""" if status: print(f"Audio callback status: {status}") # Convert to mono if necessary if CHANNELS > 1: audio_data = np.mean(indata, axis=1) else: audio_data = indata.flatten() # Update circular buffer with self.buffer_lock: self.buffer = np.roll(self.buffer, -len(audio_data)) self.buffer[-len(audio_data):] = audio_data # Process for wake word detection prediction = self.wake_word_model.predict(audio_data) # Check if wake word detected for wake_word, score in prediction.items(): if score > DETECTION_THRESHOLD: print(f"Wake word detected: {wake_word} (confidence: {score:.2f})") self.save_audio_segment() break def save_audio_segment(self): """Save the audio buffer when wake word is detected""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"/audio/wake_word_{timestamp}.wav" # Save the audio buffer to a WAV file with wave.open(filename, 'wb') as wf: wf.setnchannels(CHANNELS) wf.setsampwidth(2) # 16-bit audio wf.setframerate(SAMPLE_RATE) # Convert float32 to int16 audio_data = (self.buffer * 32767).astype(np.int16) wf.writeframes(audio_data.tobytes()) print(f"Saved audio segment to {filename}") # Write metadata metadata = { "timestamp": timestamp, "sample_rate": SAMPLE_RATE, "channels": CHANNELS, "duration": BUFFER_DURATION } with open(f"{filename}.json", 'w') as f: json.dump(metadata, f, indent=2) def start(self): """Start audio processing""" try: with sd.InputStream( channels=CHANNELS, samplerate=SAMPLE_RATE, blocksize=CHUNK_SIZE, callback=self.audio_callback ): print("Wake word detection started. Listening...") while True: sd.sleep(1000) # Sleep for 1 second except KeyboardInterrupt: print("\nStopping wake word detection...") except Exception as e: print(f"Error in audio processing: {e}") if __name__ == "__main__": print("Initializing wake word detection...") processor = AudioProcessor() processor.start()