--- layout: default title: Architecture nav_order: 4 --- # Architecture Overview 🏗️ This document describes the architecture of the MCP Server, explaining how different components work together to provide a bridge between Home Assistant and Language Learning Models. ## System Architecture ```mermaid graph TD subgraph "Client Layer" WC[Web Clients] MC[Mobile Clients] VC[Voice Assistants] end subgraph "MCP Server" API[API Gateway] NLP[NLP Engine] SSE[SSE Manager] WS[WebSocket Server] CM[Command Manager] SC[Scene Controller] Cache[Redis Cache] end subgraph "Home Assistant" HA[Home Assistant Core] Dev[Devices & Services] end subgraph "AI Layer" LLM[Language Models] IC[Intent Classifier] NER[Named Entity Recognition] end WC --> |HTTP/WS| API MC --> |HTTP/WS| API VC --> |HTTP| API API --> |Events| SSE API --> |Real-time| WS API --> |Process| NLP NLP --> |Query| LLM NLP --> |Extract| IC NLP --> |Identify| NER CM --> |Execute| HA HA --> |Control| Dev SSE --> |State Updates| WC SSE --> |State Updates| MC WS --> |Bi-directional| WC Cache --> |Fast Access| API HA --> |Events| Cache ``` ## Component Details ### 1. Client Layer The client layer consists of various interfaces that interact with the MCP Server: - **Web Clients**: Browser-based dashboards and control panels - **Mobile Clients**: Native mobile applications - **Voice Assistants**: Voice-enabled devices and interfaces ### 2. MCP Server Core #### API Gateway - Handles all incoming HTTP requests - Manages authentication and rate limiting - Routes requests to appropriate handlers ```typescript interface APIGateway { authenticate(): Promise; rateLimit(): Promise; route(request: Request): Promise; } ``` #### NLP Engine - Processes natural language commands - Integrates with Language Models - Extracts intents and entities ```typescript interface NLPEngine { processCommand(text: string): Promise; extractEntities(text: string): Promise; validateIntent(intent: CommandIntent): boolean; } ``` #### Event Management - **SSE Manager**: Handles Server-Sent Events - **WebSocket Server**: Manages bi-directional communication - **Command Manager**: Processes and executes commands ### 3. Home Assistant Integration The server maintains a robust connection to Home Assistant through: - REST API calls - WebSocket connections - Event subscriptions ```typescript interface HomeAssistantClient { connect(): Promise; getState(entityId: string): Promise; executeCommand(command: Command): Promise; subscribeToEvents(callback: EventCallback): Subscription; } ``` ### 4. AI Layer #### Language Model Integration - Processes natural language input - Understands context and user intent - Generates appropriate responses #### Intent Classification - Identifies command types - Extracts parameters - Validates requests ## Data Flow ### 1. Command Processing ```mermaid sequenceDiagram participant Client participant API participant NLP participant LLM participant HA Client->>API: Send command API->>NLP: Process text NLP->>LLM: Get intent LLM-->>NLP: Return structured intent NLP->>HA: Execute command HA-->>API: Return result API-->>Client: Send response ``` ### 2. Real-time Updates ```mermaid sequenceDiagram participant HA participant Cache participant SSE participant Client HA->>Cache: State change Cache->>SSE: Notify change SSE->>Client: Send update Note over Client: Update UI ``` ### 3. [SSE API](api/sse.md) - Event Subscriptions - Real-time Updates - Connection Management ## Security Architecture ### Authentication Flow 1. **JWT-based Authentication** ```typescript interface AuthToken { token: string; expires: number; scope: string[]; } ``` 2. **Rate Limiting** ```typescript interface RateLimit { window: number; max: number; current: number; } ``` ### Security Measures - TLS encryption for all communications - Input sanitization - Request validation - Token-based authentication - Rate limiting - IP filtering ## Performance Optimizations ### Caching Strategy ```mermaid graph LR Request --> Cache{Cache?} Cache -->|Hit| Response Cache -->|Miss| HA[Home Assistant] HA --> Cache Cache --> Response ``` ### Connection Management - Connection pooling - Automatic reconnection - Load balancing - Request queuing ## Configuration The system is highly configurable through environment variables and configuration files: ```yaml server: port: 3000 host: '0.0.0.0' homeAssistant: url: 'http://homeassistant:8123' token: 'YOUR_TOKEN' security: jwtSecret: 'your-secret' rateLimit: 100 ai: model: 'gpt-4' temperature: 0.7 cache: ttl: 300 maxSize: '100mb' ``` ## Deployment Architecture ### Docker Deployment ```mermaid graph TD subgraph "Docker Compose" MCP[MCP Server] Redis[Redis Cache] HA[Home Assistant] end MCP --> Redis MCP --> HA ``` ### Scaling Considerations - Horizontal scaling capabilities - Load balancing support - Redis cluster support - Multiple HA instance support ## Further Reading - [API Documentation](api/index.md) - [Installation Guide](getting-started/installation.md) - [Contributing Guidelines](contributing.md) - [Troubleshooting](troubleshooting.md)