# System Configuration This document provides detailed information about configuring the Home Assistant MCP Server. ## Environment File Structure The MCP Server uses a flexible environment configuration system with support for different environments and local overrides: ### Environment Files 1. `.env.example` - Template file containing all available configuration options with example values - Use this as a reference to create your environment-specific configuration files - Not loaded by the application 2. Environment-specific files (loaded based on NODE_ENV): - `.env.dev` - Development environment (default) - `.env.test` - Test environment - `.env.prod` - Production environment 3. `.env` - Optional local override file - If present, values in this file override those from the environment-specific file - Useful for local development without modifying the environment-specific files ### File Loading Order 1. First, the environment-specific file is loaded based on NODE_ENV: - `NODE_ENV=production` → `.env.prod` - `NODE_ENV=development` → `.env.dev` (default) - `NODE_ENV=test` → `.env.test` 2. Then, if a `.env` file exists, its values override any previously loaded values Example setup: ```bash # .env.dev - Development configuration PORT=4000 HASS_HOST=http://homeassistant.local:8123 LOG_LEVEL=debug # .env - Local overrides PORT=3000 # Overrides PORT from .env.dev HASS_HOST=http://localhost:8123 # Overrides HASS_HOST from .env.dev ``` ## Configuration File Structure The MCP Server uses environment variables for configuration, with support for different environments (development, test, production): ```bash # .env, .env.development, or .env.test PORT=4000 NODE_ENV=development HASS_HOST=http://192.168.178.63:8123 HASS_TOKEN=your_token_here JWT_SECRET=your_secret_key ``` ## Server Settings ### Basic Server Configuration - `PORT`: Server port number (default: 4000) - `NODE_ENV`: Environment mode (development, production, test) - `HASS_HOST`: Home Assistant instance URL - `HASS_TOKEN`: Home Assistant long-lived access token ### Security Settings - `JWT_SECRET`: Secret key for JWT token generation - `RATE_LIMIT`: Rate limiting configuration - `windowMs`: Time window in milliseconds (default: 15 minutes) - `max`: Maximum requests per window (default: 100) ### WebSocket Settings - `SSE`: Server-Sent Events configuration - `MAX_CLIENTS`: Maximum concurrent clients (default: 1000) - `PING_INTERVAL`: Keep-alive ping interval in ms (default: 30000) ### Speech Features (Optional) - `ENABLE_SPEECH_FEATURES`: Enable speech processing features (default: false) - `ENABLE_WAKE_WORD`: Enable wake word detection (default: false) - `ENABLE_SPEECH_TO_TEXT`: Enable speech-to-text conversion (default: false) - `WHISPER_MODEL_PATH`: Path to Whisper models directory (default: /models) - `WHISPER_MODEL_TYPE`: Whisper model type (default: base) - Available models: tiny.en, base.en, small.en, medium.en, large-v2 ## Environment Variables All configuration is managed through environment variables: ```bash # Server PORT=4000 NODE_ENV=development # Home Assistant HASS_HOST=http://your-hass-instance:8123 HASS_TOKEN=your_token_here # Security JWT_SECRET=your-secret-key # Logging LOG_LEVEL=info LOG_DIR=logs LOG_MAX_SIZE=20m LOG_MAX_DAYS=14d LOG_COMPRESS=true LOG_REQUESTS=true # Speech Features (Optional) ENABLE_SPEECH_FEATURES=false ENABLE_WAKE_WORD=false ENABLE_SPEECH_TO_TEXT=false WHISPER_MODEL_PATH=/models WHISPER_MODEL_TYPE=base ``` ## Advanced Configuration ### Security Rate Limiting Rate limiting is enabled by default to protect against brute force attacks: ```typescript RATE_LIMIT: { windowMs: 15 * 60 * 1000, // 15 minutes max: 100 // limit each IP to 100 requests per window } ``` ### Logging The server uses Bun's built-in logging capabilities with additional configuration: ```typescript LOGGING: { LEVEL: "info", // debug, info, warn, error DIR: "logs", MAX_SIZE: "20m", MAX_DAYS: "14d", COMPRESS: true, TIMESTAMP_FORMAT: "YYYY-MM-DD HH:mm:ss:ms", LOG_REQUESTS: true } ``` ### Speech-to-Text Configuration When speech features are enabled, you can configure the following options: ```typescript SPEECH: { ENABLED: false, // Master switch for all speech features WAKE_WORD_ENABLED: false, // Enable wake word detection SPEECH_TO_TEXT_ENABLED: false, // Enable speech-to-text WHISPER_MODEL_PATH: "/models", // Path to Whisper models WHISPER_MODEL_TYPE: "base", // Model type to use } ``` Available Whisper models: - `tiny.en`: Fastest, lowest accuracy - `base.en`: Good balance of speed and accuracy - `small.en`: Better accuracy, slower - `medium.en`: High accuracy, much slower - `large-v2`: Best accuracy, very slow For production deployments, we recommend using system tools like `logrotate` for log management. Example logrotate configuration (`/etc/logrotate.d/mcp-server`): ``` /var/log/mcp-server.log { daily rotate 7 compress delaycompress missingok notifempty create 644 mcp mcp } ``` ## Best Practices 1. Always use environment variables for sensitive information 2. Keep .env files secure and never commit them to version control 3. Use different environment files for development, test, and production 4. Enable SSL/TLS in production (preferably via reverse proxy) 5. Monitor log files for issues 6. Regularly rotate logs in production 7. Start with smaller Whisper models and upgrade if needed 8. Consider GPU acceleration for larger Whisper models ## Validation The server validates configuration on startup using Zod schemas: - Required fields are checked (e.g., HASS_TOKEN) - Value types are verified - Enums are validated (e.g., LOG_LEVEL, WHISPER_MODEL_TYPE) - Default values are applied when not specified ## Troubleshooting Common configuration issues: 1. Missing required environment variables 2. Invalid environment variable values 3. Permission issues with log directories 4. Rate limiting too restrictive 5. Speech model loading failures 6. Docker not available for speech features 7. Insufficient system resources for larger models See the [Troubleshooting Guide](troubleshooting.md) for solutions. # Configuration Guide This document describes all available configuration options for the Home Assistant MCP Server. ## Environment Variables ### Required Settings ```bash # Server Configuration PORT=3000 # Server port HOST=localhost # Server host # Home Assistant HASS_URL=http://localhost:8123 # Home Assistant URL HASS_TOKEN=your_token # Long-lived access token # Security JWT_SECRET=your_secret # JWT signing secret ``` ### Optional Settings ```bash # Rate Limiting RATE_LIMIT_WINDOW=60000 # Time window in ms (default: 60000) RATE_LIMIT_MAX=100 # Max requests per window (default: 100) # Logging LOG_LEVEL=info # debug, info, warn, error (default: info) LOG_DIR=logs # Log directory (default: logs) LOG_MAX_SIZE=10m # Max log file size (default: 10m) LOG_MAX_FILES=5 # Max number of log files (default: 5) # WebSocket/SSE WS_HEARTBEAT=30000 # WebSocket heartbeat interval in ms (default: 30000) SSE_RETRY=3000 # SSE retry interval in ms (default: 3000) # Speech Features ENABLE_SPEECH_FEATURES=false # Enable speech processing (default: false) ENABLE_WAKE_WORD=false # Enable wake word detection (default: false) ENABLE_SPEECH_TO_TEXT=false # Enable speech-to-text (default: false) # Speech Model Configuration WHISPER_MODEL_PATH=/models # Path to whisper models (default: /models) WHISPER_MODEL_TYPE=base # Model type: tiny|base|small|medium|large-v2 (default: base) WHISPER_LANGUAGE=en # Primary language (default: en) WHISPER_TASK=transcribe # Task type: transcribe|translate (default: transcribe) WHISPER_DEVICE=cuda # Processing device: cpu|cuda (default: cuda if available, else cpu) # Wake Word Configuration WAKE_WORDS=hey jarvis,ok google,alexa # Comma-separated wake words (default: hey jarvis) WAKE_WORD_SENSITIVITY=0.5 # Detection sensitivity 0-1 (default: 0.5) ``` ## Speech Features ### Model Selection Choose a model based on your needs: | Model | Size | Memory Required | Speed | Accuracy | |------------|-------|-----------------|-------|----------| | tiny.en | 75MB | 1GB | Fast | Basic | | base.en | 150MB | 2GB | Good | Good | | small.en | 500MB | 4GB | Med | Better | | medium.en | 1.5GB | 8GB | Slow | High | | large-v2 | 3GB | 16GB | Slow | Best | ### GPU Acceleration When `WHISPER_DEVICE=cuda`: - NVIDIA GPU with CUDA support required - Significantly faster processing - Higher memory requirements ### Wake Word Detection - Multiple wake words supported via comma-separated list - Adjustable sensitivity (0-1): - Lower values: Fewer false positives, may miss some triggers - Higher values: More responsive, may have false triggers - Default (0.5): Balanced detection ### Best Practices 1. Model Selection: - Start with `base.en` model - Upgrade if better accuracy needed - Downgrade if performance issues 2. Resource Management: - Monitor memory usage - Use GPU acceleration when available - Consider model size vs available resources 3. Wake Word Configuration: - Use distinct wake words - Adjust sensitivity based on environment - Limit number of wake words for better performance