Files
homeassistant-mcp/docker/speech/Dockerfile
jango-blockchained 60f18f8e71 feat(speech): add speech-to-text and wake word detection modules
- Implement SpeechToText class with Docker-based transcription capabilities
- Add wake word detection using OpenWakeWord and fast-whisper models
- Create Dockerfile for speech processing container
- Develop comprehensive test suite for speech recognition functionality
- Include audio processing and event-driven transcription features
2025-02-04 19:08:01 +01:00

39 lines
1.1 KiB
Docker

FROM python:3.10-slim
# Install system dependencies
RUN apt-get update && apt-get install -y \
git \
build-essential \
portaudio19-dev \
python3-pyaudio \
&& rm -rf /var/lib/apt/lists/*
# Install fast-whisper and its dependencies
RUN pip install --no-cache-dir torch torchaudio --index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache-dir fast-whisper
# Install wake word detection
RUN pip install --no-cache-dir openwakeword pyaudio sounddevice
# Create directories
RUN mkdir -p /models /audio
# Download the base model by default
RUN python -c "from faster_whisper import WhisperModel; WhisperModel.download_model('base.en', cache_dir='/models')"
# Download OpenWakeWord models
RUN mkdir -p /models/wake_word && \
python -c "import openwakeword; openwakeword.download_models(['hey_jarvis', 'ok_google', 'alexa'], '/models/wake_word')"
WORKDIR /app
# Copy the wake word detection script
COPY wake_word_detector.py .
# Set environment variables
ENV WHISPER_MODEL_PATH=/models
ENV WAKEWORD_MODEL_PATH=/models/wake_word
ENV PYTHONUNBUFFERED=1
# Run the wake word detection service
CMD ["python", "wake_word_detector.py"]