Merge pull request #32 from mudler/feat/multimodal
feat: add capability to understand images
This commit is contained in:
@@ -78,6 +78,7 @@ LocalAgent can be configured using the following environment variables:
|
||||
| Variable | Description |
|
||||
|-------------------------------|--------------------------------------------------|
|
||||
| `LOCALAGENT_MODEL` | Specifies the test model to use |
|
||||
| `LOCALAGENT_MULTIMODAL_MODEL` | Specifies a separate model to use with multimodal capabilities (optional, if LOCALAGENT_MODEL does not support multimodality) |
|
||||
| `LOCALAGENT_LLM_API_URL` | URL of the API server |
|
||||
| `LOCALAGENT_API_KEY` | API key for authentication |
|
||||
| `LOCALAGENT_TIMEOUT` | Timeout duration for requests |
|
||||
|
||||
@@ -139,6 +139,17 @@ func (m Messages) Save(path string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m Messages) GetLatestUserMessage() *openai.ChatCompletionMessage {
|
||||
for i := len(m) - 1; i >= 0; i-- {
|
||||
msg := m[i]
|
||||
if msg.Role == UserRole {
|
||||
return &msg
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *Agent) generateParameters(ctx context.Context, pickTemplate string, act Action, c []openai.ChatCompletionMessage, reasoning string) (*decisionResult, error) {
|
||||
|
||||
stateHUD, err := renderTemplate(pickTemplate, a.prepareHUD(), a.systemInternalActions(), reasoning)
|
||||
|
||||
@@ -249,6 +249,171 @@ func (a *Agent) runAction(chosenAction Action, params action.ActionParams) (resu
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (a *Agent) processPrompts() {
|
||||
//if job.Image != "" {
|
||||
// TODO: Use llava to explain the image content
|
||||
//}
|
||||
// Add custom prompts
|
||||
for _, prompt := range a.options.prompts {
|
||||
message, err := prompt.Render(a)
|
||||
if err != nil {
|
||||
xlog.Error("Error rendering prompt", "error", err)
|
||||
continue
|
||||
}
|
||||
if message == "" {
|
||||
xlog.Debug("Prompt is empty, skipping", "agent", a.Character.Name)
|
||||
continue
|
||||
}
|
||||
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: prompt.Role(),
|
||||
Content: message,
|
||||
}}, a.currentConversation...)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: move to a Promptblock?
|
||||
if a.options.systemPrompt != "" {
|
||||
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "system",
|
||||
Content: a.options.systemPrompt,
|
||||
}}, a.currentConversation...)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (a *Agent) describeImage(ctx context.Context, model, imageURL string) (string, error) {
|
||||
resp, err := a.client.CreateChatCompletion(ctx,
|
||||
openai.ChatCompletionRequest{
|
||||
Model: model, Messages: []openai.ChatCompletionMessage{
|
||||
{
|
||||
|
||||
Role: "user",
|
||||
MultiContent: []openai.ChatMessagePart{
|
||||
{
|
||||
Type: openai.ChatMessagePartTypeText,
|
||||
Text: "What is in the image?",
|
||||
},
|
||||
{
|
||||
Type: openai.ChatMessagePartTypeImageURL,
|
||||
ImageURL: &openai.ChatMessageImageURL{
|
||||
URL: imageURL,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}})
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
if len(resp.Choices) == 0 {
|
||||
return "", fmt.Errorf("no choices")
|
||||
}
|
||||
|
||||
return resp.Choices[0].Message.Content, nil
|
||||
}
|
||||
|
||||
func extractImageContent(message openai.ChatCompletionMessage) (imageURL, text string, e error) {
|
||||
e = fmt.Errorf("no image found")
|
||||
if message.MultiContent != nil {
|
||||
for _, content := range message.MultiContent {
|
||||
if content.Type == openai.ChatMessagePartTypeImageURL {
|
||||
imageURL = content.ImageURL.URL
|
||||
e = nil
|
||||
}
|
||||
if content.Type == openai.ChatMessagePartTypeText {
|
||||
text = content.Text
|
||||
e = nil
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func (a *Agent) processUserInputs(job *Job, role string) {
|
||||
|
||||
noNewMessage := job.Text == "" && job.Image == ""
|
||||
onlyText := job.Text != "" && job.Image == ""
|
||||
|
||||
// walk conversation history, and check if last message from user contains image.
|
||||
// If it does, we need to describe the image first with a model that supports image understanding (if the current model doesn't support it)
|
||||
// and add it to the conversation context
|
||||
if a.options.SeparatedMultimodalModel() && noNewMessage {
|
||||
lastUserMessage := a.currentConversation.GetLatestUserMessage()
|
||||
if lastUserMessage != nil {
|
||||
imageURL, text, err := extractImageContent(*lastUserMessage)
|
||||
if err == nil {
|
||||
// We have an image, we need to describe it first
|
||||
// and add it to the conversation context
|
||||
imageDescription, err := a.describeImage(a.context.Context, a.options.LLMAPI.MultimodalModel, imageURL)
|
||||
if err != nil {
|
||||
xlog.Error("Error describing image", "error", err)
|
||||
} else {
|
||||
// We replace the user message with the image description
|
||||
// and add the user text to the conversation
|
||||
lastUserMessage.Content = fmt.Sprintf("The user shared an image which can be described as: %s", imageDescription)
|
||||
lastUserMessage.MultiContent = nil
|
||||
lastUserMessage.Role = "system"
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
Content: text,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if onlyText {
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
Content: job.Text,
|
||||
})
|
||||
}
|
||||
|
||||
if job.Image != "" {
|
||||
// If an image is present with the text
|
||||
// we have two cases: if the model supports both images and text, we can send both
|
||||
// if the model supports only text, we can send the text only and we need to describe the image first with a model that support image understanding and add it to the conversation context
|
||||
if a.options.SeparatedMultimodalModel() {
|
||||
// We need to describe the image first
|
||||
imageDescription, err := a.describeImage(a.context.Context, a.options.LLMAPI.Model, job.Image)
|
||||
if err != nil {
|
||||
xlog.Error("Error describing image", "error", err)
|
||||
} else {
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: "system",
|
||||
Content: fmt.Sprintf("The user shared an image which can be described as: %s", imageDescription),
|
||||
})
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
Content: job.Text,
|
||||
})
|
||||
}
|
||||
} else {
|
||||
// Just append to the message both the image and the text
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
MultiContent: []openai.ChatMessagePart{
|
||||
{
|
||||
Type: openai.ChatMessagePartTypeText,
|
||||
Text: job.Text,
|
||||
},
|
||||
{
|
||||
Type: openai.ChatMessagePartTypeImageURL,
|
||||
ImageURL: &openai.ChatMessageImageURL{
|
||||
URL: job.Image,
|
||||
},
|
||||
},
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (a *Agent) consumeJob(job *Job, role string) {
|
||||
a.Lock()
|
||||
paused := a.pause
|
||||
@@ -290,46 +455,8 @@ func (a *Agent) consumeJob(job *Job, role string) {
|
||||
}()
|
||||
}
|
||||
|
||||
//if job.Image != "" {
|
||||
// TODO: Use llava to explain the image content
|
||||
//}
|
||||
// Add custom prompts
|
||||
for _, prompt := range a.options.prompts {
|
||||
message, err := prompt.Render(a)
|
||||
if err != nil {
|
||||
xlog.Error("Error rendering prompt", "error", err)
|
||||
continue
|
||||
}
|
||||
if message == "" {
|
||||
xlog.Debug("Prompt is empty, skipping", "agent", a.Character.Name)
|
||||
continue
|
||||
}
|
||||
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: prompt.Role(),
|
||||
Content: message,
|
||||
}}, a.currentConversation...)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: move to a Promptblock?
|
||||
if a.options.systemPrompt != "" {
|
||||
if !Messages(a.currentConversation).Exist(a.options.systemPrompt) {
|
||||
a.currentConversation = append([]openai.ChatCompletionMessage{
|
||||
{
|
||||
Role: "system",
|
||||
Content: a.options.systemPrompt,
|
||||
}}, a.currentConversation...)
|
||||
}
|
||||
}
|
||||
|
||||
if job.Text != "" {
|
||||
a.currentConversation = append(a.currentConversation, openai.ChatCompletionMessage{
|
||||
Role: role,
|
||||
Content: job.Text,
|
||||
})
|
||||
}
|
||||
a.processPrompts()
|
||||
a.processUserInputs(job, role)
|
||||
|
||||
// RAG
|
||||
a.knowledgeBaseLookup()
|
||||
|
||||
@@ -7,10 +7,12 @@ import (
|
||||
)
|
||||
|
||||
type Option func(*options) error
|
||||
|
||||
type llmOptions struct {
|
||||
APIURL string
|
||||
APIKey string
|
||||
Model string
|
||||
APIURL string
|
||||
APIKey string
|
||||
Model string
|
||||
MultimodalModel string
|
||||
}
|
||||
|
||||
type options struct {
|
||||
@@ -44,6 +46,10 @@ type options struct {
|
||||
conversationsPath string
|
||||
}
|
||||
|
||||
func (o *options) SeparatedMultimodalModel() bool {
|
||||
return o.LLMAPI.MultimodalModel != "" && o.LLMAPI.Model != o.LLMAPI.MultimodalModel
|
||||
}
|
||||
|
||||
func defaultOptions() *options {
|
||||
return &options{
|
||||
periodicRuns: 15 * time.Minute,
|
||||
@@ -209,6 +215,13 @@ func WithLLMAPIKey(key string) Option {
|
||||
}
|
||||
}
|
||||
|
||||
func WithMultimodalModel(model string) Option {
|
||||
return func(o *options) error {
|
||||
o.LLMAPI.MultimodalModel = model
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
func WithPermanentGoal(goal string) Option {
|
||||
return func(o *options) error {
|
||||
o.permanentGoal = goal
|
||||
|
||||
@@ -34,6 +34,7 @@ type AgentConfig struct {
|
||||
|
||||
// This is what needs to be part of ActionsConfig
|
||||
Model string `json:"model" form:"model"`
|
||||
MultimodalModel string `json:"multimodal_model" form:"multimodal_model"`
|
||||
Name string `json:"name" form:"name"`
|
||||
HUD bool `json:"hud" form:"hud"`
|
||||
StandaloneJob bool `json:"standalone_job" form:"standalone_job"`
|
||||
|
||||
@@ -21,18 +21,18 @@ import (
|
||||
|
||||
type AgentPool struct {
|
||||
sync.Mutex
|
||||
file string
|
||||
pooldir string
|
||||
pool AgentPoolData
|
||||
agents map[string]*Agent
|
||||
managers map[string]sse.Manager
|
||||
agentStatus map[string]*Status
|
||||
apiURL, model, localRAGAPI, apiKey string
|
||||
availableActions func(*AgentConfig) func(ctx context.Context) []Action
|
||||
connectors func(*AgentConfig) []Connector
|
||||
promptBlocks func(*AgentConfig) []PromptBlock
|
||||
timeout string
|
||||
conversationLogs string
|
||||
file string
|
||||
pooldir string
|
||||
pool AgentPoolData
|
||||
agents map[string]*Agent
|
||||
managers map[string]sse.Manager
|
||||
agentStatus map[string]*Status
|
||||
apiURL, model, multimodalModel, localRAGAPI, apiKey string
|
||||
availableActions func(*AgentConfig) func(ctx context.Context) []Action
|
||||
connectors func(*AgentConfig) []Connector
|
||||
promptBlocks func(*AgentConfig) []PromptBlock
|
||||
timeout string
|
||||
conversationLogs string
|
||||
}
|
||||
|
||||
type Status struct {
|
||||
@@ -66,7 +66,7 @@ func loadPoolFromFile(path string) (*AgentPoolData, error) {
|
||||
}
|
||||
|
||||
func NewAgentPool(
|
||||
model, apiURL, apiKey, directory string,
|
||||
model, multimodalModel, apiURL, apiKey, directory string,
|
||||
LocalRAGAPI string,
|
||||
availableActions func(*AgentConfig) func(ctx context.Context) []agent.Action,
|
||||
connectors func(*AgentConfig) []Connector,
|
||||
@@ -91,6 +91,7 @@ func NewAgentPool(
|
||||
pooldir: directory,
|
||||
apiURL: apiURL,
|
||||
model: model,
|
||||
multimodalModel: multimodalModel,
|
||||
localRAGAPI: LocalRAGAPI,
|
||||
apiKey: apiKey,
|
||||
agents: make(map[string]*Agent),
|
||||
@@ -114,6 +115,7 @@ func NewAgentPool(
|
||||
apiURL: apiURL,
|
||||
pooldir: directory,
|
||||
model: model,
|
||||
multimodalModel: multimodalModel,
|
||||
apiKey: apiKey,
|
||||
agents: make(map[string]*Agent),
|
||||
managers: make(map[string]sse.Manager),
|
||||
@@ -165,6 +167,10 @@ func (a *AgentPool) startAgentWithConfig(name string, config *AgentConfig) error
|
||||
manager := sse.NewManager(5)
|
||||
ctx := context.Background()
|
||||
model := a.model
|
||||
multimodalModel := a.multimodalModel
|
||||
if config.MultimodalModel != "" {
|
||||
multimodalModel = config.MultimodalModel
|
||||
}
|
||||
if config.Model != "" {
|
||||
model = config.Model
|
||||
}
|
||||
@@ -244,6 +250,7 @@ func (a *AgentPool) startAgentWithConfig(name string, config *AgentConfig) error
|
||||
return true
|
||||
}),
|
||||
WithSystemPrompt(config.SystemPrompt),
|
||||
WithMultimodalModel(multimodalModel),
|
||||
WithAgentResultCallback(func(state ActionState) {
|
||||
a.Lock()
|
||||
if _, ok := a.agentStatus[name]; !ok {
|
||||
|
||||
2
main.go
2
main.go
@@ -11,6 +11,7 @@ import (
|
||||
)
|
||||
|
||||
var testModel = os.Getenv("LOCALAGENT_MODEL")
|
||||
var multimodalModel = os.Getenv("LOCALAGENT_MULTIMODAL_MODEL")
|
||||
var apiURL = os.Getenv("LOCALAGENT_LLM_API_URL")
|
||||
var apiKey = os.Getenv("LOCALAGENT_API_KEY")
|
||||
var timeout = os.Getenv("LOCALAGENT_TIMEOUT")
|
||||
@@ -45,6 +46,7 @@ func main() {
|
||||
// Create the agent pool
|
||||
pool, err := state.NewAgentPool(
|
||||
testModel,
|
||||
multimodalModel,
|
||||
apiURL,
|
||||
apiKey,
|
||||
stateDir,
|
||||
|
||||
Reference in New Issue
Block a user