* chore(README): update Signed-off-by: mudler <mudler@localai.io> * Update logos --------- Signed-off-by: mudler <mudler@localai.io>
12 KiB
LocalAGI
Your AI. Your Hardware. Your Rules.
🚀 What is LocalAGI?
LocalAGI is a powerful, self-hostable AI Agent platform designed for maximum privacy and flexibility. A complete drop-in replacement for OpenAI's Responses APIs—with advanced agentic capabilities. No clouds. No data leaks. Just pure local AI that respects your privacy.
🛡️ Take Back Your Privacy
Are you tired of AI wrappers calling out to cloud APIs, risking your privacy? So were we.
LocalAGI ensures your data stays exactly where you want it—on your hardware. No API keys, no cloud subscriptions, no compromise.
🌟 Key Features
- 🎛 No-Code Agents: Easy-to-configure multiple agents via Web UI.
- 🖥 Web-Based Interface: Simple and intuitive agent management.
- 🤖 Advanced Agent Teaming: Instantly create cooperative agent teams from a single prompt.
- 📡 Connectors Galore: Built-in integrations with Discord, Slack, Telegram, GitHub Issues, and IRC.
- 🛠 Comprehensive REST API: Seamless integration into your workflows. Every agent created will support OpenAI Responses API out of the box.
- 📚 Short & Long-Term Memory: Powered by LocalRAG.
- 🧠 Planning & Reasoning: Agents intelligently plan, reason, and adapt.
- 🖼 Multimodal Support: Ready for vision, text, and more.
- 🔧 Extensible Custom Actions: Easily script dynamic agent behaviors in Go (interpreted, no compilation!).
- 🛠 Fully Customizable Models: Use your own models or integrate seamlessly with LocalAI.
🛠️ Quickstart
# Clone the repository
git clone https://github.com/mudler/LocalAGI
cd LocalAGI
# CPU setup
docker compose up -f docker-compose.yml
# GPU setup
docker compose up -f docker-compose.gpu.yml
Access your agents at http://localhost:3000
🏆 Why Choose LocalAGI?
- ✓ Ultimate Privacy: No data ever leaves your hardware.
- ✓ Flexible Model Integration: Supports GGUF, GGML, and more.
- ✓ Developer-Friendly: Rich APIs and intuitive interfaces.
- ✓ Effortless Setup: Simple Docker setups and pre-built binaries.
- ✓ Platform Agnostic: Works seamlessly on Linux, macOS, and Windows.
🌐 The Local Ecosystem
LocalAGI is part of the powerful Local family of privacy-focused AI tools:
- LocalAI: Run Large Language Models locally.
- LocalRAG: Retrieval-Augmented Generation with local storage.
- LocalAGI: Deploy intelligent AI agents securely and privately.
🌟 Screenshots
Powerful Web UI
Connectors Ready-to-Go
📖 Full Documentation
Explore detailed documentation including:
Environment Configuration
| Variable | What It Does |
|---|---|
LOCALAGENT_MODEL |
Your go-to model |
LOCALAGENT_MULTIMODAL_MODEL |
Optional model for multimodal capabilities |
LOCALAGENT_LLM_API_URL |
OpenAI-compatible API server URL |
LOCALAGENT_LLM_API_KEY |
API authentication |
LOCALAGENT_TIMEOUT |
Request timeout settings |
LOCALAGENT_STATE_DIR |
Where state gets stored |
LOCALAGENT_LOCALRAG_URL |
LocalRAG connection |
LOCALAGENT_ENABLE_CONVERSATIONS_LOGGING |
Toggle conversation logs |
LOCALAGENT_API_KEYS |
A comma separated list of api keys used for authentication |
Installation Options
Pre-Built Binaries
Download ready-to-run binaries from the Releases page.
Source Build
Requirements:
- Go 1.20+
- Git
- Bun 1.2+
# Clone repo
git clone https://github.com/mudler/LocalAgent.git
cd LocalAgent
# Build it
cd webui/react-ui && bun i && bun run build
cd ../..
go build -o localagent
# Run it
./localagent
Development
The development workflow is similar to the source build, but with additional steps for hot reloading of the frontend:
# Clone repo
git clone https://github.com/mudler/LocalAgent.git
cd LocalAgent
# Install dependencies and start frontend development server
cd webui/react-ui && bun i && bun run dev
Then in seperate terminal:
# Start development server
cd ../.. && go run main.go
Note: see webui/react-ui/.vite.config.js for env vars that can be used to configure the backend URL
CONNECTORS
Link your agents to the services you already use. Configuration examples below.
GitHub Issues
{
"token": "YOUR_PAT_TOKEN",
"repository": "repo-to-monitor",
"owner": "repo-owner",
"botUserName": "bot-username"
}
Discord
After creating your Discord bot:
{
"token": "Bot YOUR_DISCORD_TOKEN",
"defaultChannel": "OPTIONAL_CHANNEL_ID"
}
Don't forget to enable "Message Content Intent" in Bot(tab) settings! Enable " Message Content Intent " in the Bot tab!
Slack
Use the included slack.yaml manifest to create your app, then configure:
{
"botToken": "xoxb-your-bot-token",
"appToken": "xapp-your-app-token"
}
- Create Oauth token bot token from "OAuth & Permissions" -> "OAuth Tokens for Your Workspace"
- Create App level token (from "Basic Information" -> "App-Level Tokens" ( scope connections:writeRoute authorizations:read ))
Telegram
Get a token from @botfather, then:
{
"token": "your-bot-father-token"
}
IRC
Connect to IRC networks:
{
"server": "irc.example.com",
"port": "6667",
"nickname": "LocalAgentBot",
"channel": "#yourchannel",
"alwaysReply": "false"
}
REST API
Agent Management
| Endpoint | Method | Description | Example |
|---|---|---|---|
/api/agents |
GET | List all available agents | Example |
/api/agent/:name/status |
GET | View agent status history | Example |
/api/agent/create |
POST | Create a new agent | Example |
/api/agent/:name |
DELETE | Remove an agent | Example |
/api/agent/:name/pause |
PUT | Pause agent activities | Example |
/api/agent/:name/start |
PUT | Resume a paused agent | Example |
/api/agent/:name/config |
GET | Get agent configuration | |
/api/agent/:name/config |
PUT | Update agent configuration | |
/api/meta/agent/config |
GET | Get agent configuration metadata | |
/settings/export/:name |
GET | Export agent config | Example |
/settings/import |
POST | Import agent config | Example |
Actions and Groups
| Endpoint | Method | Description | Example |
|---|---|---|---|
/api/actions |
GET | List available actions | |
/api/action/:name/run |
POST | Execute an action | |
/api/agent/group/generateProfiles |
POST | Generate group profiles | |
/api/agent/group/create |
POST | Create a new agent group |
Chat Interactions
| Endpoint | Method | Description | Example |
|---|---|---|---|
/api/chat/:name |
POST | Send message & get response | Example |
/api/notify/:name |
POST | Send notification to agent | Example |
/api/sse/:name |
GET | Real-time agent event stream | Example |
/v1/responses |
POST | Send message & get response | OpenAI's Responses |
Curl Examples
Get All Agents
curl -X GET "http://localhost:3000/api/agents"
Get Agent Status
curl -X GET "http://localhost:3000/api/agent/my-agent/status"
Create Agent
curl -X POST "http://localhost:3000/api/agent/create" \
-H "Content-Type: application/json" \
-d '{
"name": "my-agent",
"model": "gpt-4",
"system_prompt": "You are an AI assistant.",
"enable_kb": true,
"enable_reasoning": true
}'
Delete Agent
curl -X DELETE "http://localhost:3000/api/agent/my-agent"
Pause Agent
curl -X PUT "http://localhost:3000/api/agent/my-agent/pause"
Start Agent
curl -X PUT "http://localhost:3000/api/agent/my-agent/start"
Get Agent Configuration
curl -X GET "http://localhost:3000/api/agent/my-agent/config"
Update Agent Configuration
curl -X PUT "http://localhost:3000/api/agent/my-agent/config" \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-4",
"system_prompt": "You are an AI assistant."
}'
Export Agent
curl -X GET "http://localhost:3000/settings/export/my-agent" --output my-agent.json
Import Agent
curl -X POST "http://localhost:3000/settings/import" \
-F "file=@/path/to/my-agent.json"
Send Message
curl -X POST "http://localhost:3000/api/chat/my-agent" \
-H "Content-Type: application/json" \
-d '{"message": "Hello, how are you today?"}'
Notify Agent
curl -X POST "http://localhost:3000/api/notify/my-agent" \
-H "Content-Type: application/json" \
-d '{"message": "Important notification"}'
Agent SSE Stream
curl -N -X GET "http://localhost:3000/api/sse/my-agent"
Note: For proper SSE handling, you should use a client that supports SSE natively.
Agent Configuration Reference
The agent configuration defines how an agent behaves and what capabilities it has. You can view the available configuration options and their descriptions by using the metadata endpoint:
curl -X GET "http://localhost:3000/api/meta/agent/config"
This will return a JSON object containing all available configuration fields, their types, and descriptions.
Here's an example of the agent configuration structure:
{
"name": "my-agent",
"model": "gpt-4",
"multimodal_model": "gpt-4-vision",
"hud": true,
"standalone_job": false,
"random_identity": false,
"initiate_conversations": true,
"enable_planning": true,
"identity_guidance": "You are a helpful assistant.",
"periodic_runs": "0 * * * *",
"permanent_goal": "Help users with their questions.",
"enable_kb": true,
"enable_reasoning": true,
"kb_results": 5,
"can_stop_itself": false,
"system_prompt": "You are an AI assistant.",
"long_term_memory": true,
"summary_long_term_memory": false
}
LICENSE
MIT License — See the LICENSE file for details.
LOCAL PROCESSING. GLOBAL THINKING.
Made with ❤️ by mudler