- Implement SpeechToText class with Docker-based transcription capabilities - Add wake word detection using OpenWakeWord and fast-whisper models - Create Dockerfile for speech processing container - Develop comprehensive test suite for speech recognition functionality - Include audio processing and event-driven transcription features
104 lines
3.3 KiB
Python
104 lines
3.3 KiB
Python
import os
|
|
import json
|
|
import queue
|
|
import threading
|
|
import numpy as np
|
|
import sounddevice as sd
|
|
from openwakeword import Model
|
|
from datetime import datetime
|
|
import wave
|
|
|
|
# Configuration
|
|
SAMPLE_RATE = 16000
|
|
CHANNELS = 1
|
|
CHUNK_SIZE = 1024
|
|
BUFFER_DURATION = 30 # seconds to keep in buffer
|
|
DETECTION_THRESHOLD = 0.5
|
|
|
|
class AudioProcessor:
|
|
def __init__(self):
|
|
self.wake_word_model = Model(
|
|
wakeword_models=["hey_jarvis", "ok_google", "alexa"],
|
|
model_path=os.environ.get('WAKEWORD_MODEL_PATH', '/models/wake_word')
|
|
)
|
|
self.audio_buffer = queue.Queue()
|
|
self.recording = False
|
|
self.buffer = np.zeros(SAMPLE_RATE * BUFFER_DURATION)
|
|
self.buffer_lock = threading.Lock()
|
|
|
|
def audio_callback(self, indata, frames, time, status):
|
|
"""Callback for audio input"""
|
|
if status:
|
|
print(f"Audio callback status: {status}")
|
|
|
|
# Convert to mono if necessary
|
|
if CHANNELS > 1:
|
|
audio_data = np.mean(indata, axis=1)
|
|
else:
|
|
audio_data = indata.flatten()
|
|
|
|
# Update circular buffer
|
|
with self.buffer_lock:
|
|
self.buffer = np.roll(self.buffer, -len(audio_data))
|
|
self.buffer[-len(audio_data):] = audio_data
|
|
|
|
# Process for wake word detection
|
|
prediction = self.wake_word_model.predict(audio_data)
|
|
|
|
# Check if wake word detected
|
|
for wake_word, score in prediction.items():
|
|
if score > DETECTION_THRESHOLD:
|
|
print(f"Wake word detected: {wake_word} (confidence: {score:.2f})")
|
|
self.save_audio_segment()
|
|
break
|
|
|
|
def save_audio_segment(self):
|
|
"""Save the audio buffer when wake word is detected"""
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
filename = f"/audio/wake_word_{timestamp}.wav"
|
|
|
|
# Save the audio buffer to a WAV file
|
|
with wave.open(filename, 'wb') as wf:
|
|
wf.setnchannels(CHANNELS)
|
|
wf.setsampwidth(2) # 16-bit audio
|
|
wf.setframerate(SAMPLE_RATE)
|
|
|
|
# Convert float32 to int16
|
|
audio_data = (self.buffer * 32767).astype(np.int16)
|
|
wf.writeframes(audio_data.tobytes())
|
|
|
|
print(f"Saved audio segment to {filename}")
|
|
|
|
# Write metadata
|
|
metadata = {
|
|
"timestamp": timestamp,
|
|
"sample_rate": SAMPLE_RATE,
|
|
"channels": CHANNELS,
|
|
"duration": BUFFER_DURATION
|
|
}
|
|
|
|
with open(f"{filename}.json", 'w') as f:
|
|
json.dump(metadata, f, indent=2)
|
|
|
|
def start(self):
|
|
"""Start audio processing"""
|
|
try:
|
|
with sd.InputStream(
|
|
channels=CHANNELS,
|
|
samplerate=SAMPLE_RATE,
|
|
blocksize=CHUNK_SIZE,
|
|
callback=self.audio_callback
|
|
):
|
|
print("Wake word detection started. Listening...")
|
|
while True:
|
|
sd.sleep(1000) # Sleep for 1 second
|
|
|
|
except KeyboardInterrupt:
|
|
print("\nStopping wake word detection...")
|
|
except Exception as e:
|
|
print(f"Error in audio processing: {e}")
|
|
|
|
if __name__ == "__main__":
|
|
print("Initializing wake word detection...")
|
|
processor = AudioProcessor()
|
|
processor.start() |