Files
homeassistant-mcp/docs/extras.md
jango-blockchained 61e930bf8a docs: Refactor documentation structure and enhance project overview
- Update MkDocs configuration with streamlined navigation and theme improvements
- Revise README with comprehensive project introduction and key features
- Add new documentation pages for NLP, custom prompts, and extras
- Enhance index page with system architecture diagram and getting started guide
- Improve overall documentation clarity and organization
2025-02-06 10:06:27 +01:00

5.0 KiB

Extras & Tools Guide 🛠️

Overview

I've included several additional tools and utilities in the extra/ directory to enhance your Home Assistant MCP experience. These tools help with automation analysis, speech processing, and client integration.

Available Tools 🧰

1. Home Assistant Analyzer CLI

# Installation
bun install -g @homeassistant-mcp/ha-analyzer-cli

# Usage
ha-analyzer analyze path/to/automation.yaml

Features:

  • 🔍 Deep automation analysis using AI models
  • 🚨 Security vulnerability scanning
  • 💡 Performance optimization suggestions
  • 📊 System health metrics
  • Energy usage analysis
  • 🤖 Automation improvement recommendations

2. Speech-to-Text Example

# Run the example
bun run extra/speech-to-text-example.ts

Features:

  • 🎤 Wake word detection ("hey jarvis", "ok google", "alexa")
  • 🗣️ Speech-to-text transcription
  • 🌍 Multiple language support
  • 🚀 GPU acceleration support
  • 📝 Event handling and logging

3. Claude Desktop Setup (macOS)

# Make script executable
chmod +x extra/claude-desktop-macos-setup.sh

# Run setup
./extra/claude-desktop-macos-setup.sh

Features:

  • 🖥️ Automated Claude Desktop installation
  • ⚙️ Environment configuration
  • 🔗 MCP integration setup
  • 🚀 Performance optimization

Home Assistant Analyzer Details 📊

Analysis Categories

  1. System Overview

    • Current state assessment
    • Health check
    • Configuration review
    • Integration status
    • Issue detection
  2. Performance Analysis

    • Resource usage monitoring
    • Response time analysis
    • Optimization opportunities
    • Bottleneck detection
  3. Security Assessment

    • Current security measures
    • Vulnerability detection
    • Security recommendations
    • Best practices review
  4. Optimization Suggestions

    • Performance improvements
    • Configuration optimizations
    • Integration enhancements
    • Automation opportunities
  5. Maintenance Tasks

    • Required updates
    • Cleanup recommendations
    • Regular maintenance tasks
    • System health checks
  6. Entity Usage Analysis

    • Most active entities
    • Rarely used entities
    • Potential duplicates
    • Usage patterns
  7. Automation Analysis

    • Inefficient automations
    • Improvement suggestions
    • Blueprint recommendations
    • Condition optimizations
  8. Energy Management

    • High consumption detection
    • Monitoring suggestions
    • Tariff optimization
    • Usage patterns

Configuration

# config/analyzer.yaml
analysis:
  depth: detailed    # quick, basic, or detailed
  models:           # AI models to use
    - gpt-4         # for complex analysis
    - gpt-3.5-turbo # for quick checks
  focus:            # Analysis focus areas
    - security
    - performance
    - automations
    - energy
  ignore:           # Paths to ignore
    - test/
    - disabled/

Speech-to-Text Integration 🎤

Prerequisites

  1. Docker installed and running
  2. NVIDIA GPU with CUDA (optional, for faster processing)
  3. Audio input device configured

Configuration

# speech-config.yaml
wake_word:
  enabled: true
  words:
    - "hey jarvis"
    - "ok google"
    - "alexa"
  sensitivity: 0.5

speech_to_text:
  model: "base"     # tiny, base, small, medium, large
  language: "en"    # en, es, fr, etc.
  use_gpu: true     # Enable GPU acceleration

Usage Example

import { SpeechProcessor } from './speech-to-text-example';

const processor = new SpeechProcessor({
  wakeWord: true,
  model: 'base',
  language: 'en'
});

processor.on('wake_word', (timestamp) => {
  console.log('Wake word detected!');
});

processor.on('transcription', (text) => {
  console.log('Transcribed:', text);
});

await processor.start();

Best Practices 🎯

  1. Analysis Tool Usage

    • Run regular system analyses
    • Focus on specific areas when needed
    • Review and implement suggestions
    • Monitor improvements
  2. Speech Processing

    • Choose appropriate models
    • Test in your environment
    • Adjust sensitivity as needed
    • Monitor performance
  3. Integration Setup

    • Follow security best practices
    • Test in development first
    • Monitor resource usage
    • Keep configurations updated

Troubleshooting 🔧

Common Issues

  1. Analyzer CLI Issues

    • Verify API keys
    • Check network connectivity
    • Validate YAML syntax
    • Review permissions
  2. Speech Processing Issues

    • Check audio device
    • Verify Docker setup
    • Monitor GPU usage
    • Check model compatibility
  3. Integration Issues

    • Verify configurations
    • Check dependencies
    • Review logs
    • Test connectivity

API Reference 🔌

Analyzer API

import { HomeAssistantAnalyzer } from './ha-analyzer-cli';

const analyzer = new HomeAssistantAnalyzer({
  depth: 'detailed',
  focus: ['security', 'performance']
});

const analysis = await analyzer.analyze();
console.log(analysis.suggestions);

See API Documentation for more details.