- Implement flexible environment variable loading strategy - Add support for environment-specific and local override configuration files - Create new `loadEnv.ts` module for dynamic environment configuration - Update configuration loading in multiple config files - Remove deprecated `.env.development.template` - Add setup script for environment validation - Improve WebSocket error handling and client configuration
9.3 KiB
System Configuration
This document provides detailed information about configuring the Home Assistant MCP Server.
Environment File Structure
The MCP Server uses a flexible environment configuration system with support for different environments and local overrides:
Environment Files
-
.env.example- Template file containing all available configuration options with example values- Use this as a reference to create your environment-specific configuration files
- Not loaded by the application
-
Environment-specific files (loaded based on NODE_ENV):
.env.dev- Development environment (default).env.test- Test environment.env.prod- Production environment
-
.env- Optional local override file- If present, values in this file override those from the environment-specific file
- Useful for local development without modifying the environment-specific files
File Loading Order
-
First, the environment-specific file is loaded based on NODE_ENV:
NODE_ENV=production→.env.prodNODE_ENV=development→.env.dev(default)NODE_ENV=test→.env.test
-
Then, if a
.envfile exists, its values override any previously loaded values
Example setup:
# .env.dev - Development configuration
PORT=4000
HASS_HOST=http://homeassistant.local:8123
LOG_LEVEL=debug
# .env - Local overrides
PORT=3000 # Overrides PORT from .env.dev
HASS_HOST=http://localhost:8123 # Overrides HASS_HOST from .env.dev
Configuration File Structure
The MCP Server uses environment variables for configuration, with support for different environments (development, test, production):
# .env, .env.development, or .env.test
PORT=4000
NODE_ENV=development
HASS_HOST=http://192.168.178.63:8123
HASS_TOKEN=your_token_here
JWT_SECRET=your_secret_key
Server Settings
Basic Server Configuration
PORT: Server port number (default: 4000)NODE_ENV: Environment mode (development, production, test)HASS_HOST: Home Assistant instance URLHASS_TOKEN: Home Assistant long-lived access token
Security Settings
JWT_SECRET: Secret key for JWT token generationRATE_LIMIT: Rate limiting configurationwindowMs: Time window in milliseconds (default: 15 minutes)max: Maximum requests per window (default: 100)
WebSocket Settings
SSE: Server-Sent Events configurationMAX_CLIENTS: Maximum concurrent clients (default: 1000)PING_INTERVAL: Keep-alive ping interval in ms (default: 30000)
Speech Features (Optional)
ENABLE_SPEECH_FEATURES: Enable speech processing features (default: false)ENABLE_WAKE_WORD: Enable wake word detection (default: false)ENABLE_SPEECH_TO_TEXT: Enable speech-to-text conversion (default: false)WHISPER_MODEL_PATH: Path to Whisper models directory (default: /models)WHISPER_MODEL_TYPE: Whisper model type (default: base)- Available models: tiny.en, base.en, small.en, medium.en, large-v2
Environment Variables
All configuration is managed through environment variables:
# Server
PORT=4000
NODE_ENV=development
# Home Assistant
HASS_HOST=http://your-hass-instance:8123
HASS_TOKEN=your_token_here
# Security
JWT_SECRET=your-secret-key
# Logging
LOG_LEVEL=info
LOG_DIR=logs
LOG_MAX_SIZE=20m
LOG_MAX_DAYS=14d
LOG_COMPRESS=true
LOG_REQUESTS=true
# Speech Features (Optional)
ENABLE_SPEECH_FEATURES=false
ENABLE_WAKE_WORD=false
ENABLE_SPEECH_TO_TEXT=false
WHISPER_MODEL_PATH=/models
WHISPER_MODEL_TYPE=base
Advanced Configuration
Security Rate Limiting
Rate limiting is enabled by default to protect against brute force attacks:
RATE_LIMIT: {
windowMs: 15 * 60 * 1000, // 15 minutes
max: 100 // limit each IP to 100 requests per window
}
Logging
The server uses Bun's built-in logging capabilities with additional configuration:
LOGGING: {
LEVEL: "info", // debug, info, warn, error
DIR: "logs",
MAX_SIZE: "20m",
MAX_DAYS: "14d",
COMPRESS: true,
TIMESTAMP_FORMAT: "YYYY-MM-DD HH:mm:ss:ms",
LOG_REQUESTS: true
}
Speech-to-Text Configuration
When speech features are enabled, you can configure the following options:
SPEECH: {
ENABLED: false, // Master switch for all speech features
WAKE_WORD_ENABLED: false, // Enable wake word detection
SPEECH_TO_TEXT_ENABLED: false, // Enable speech-to-text
WHISPER_MODEL_PATH: "/models", // Path to Whisper models
WHISPER_MODEL_TYPE: "base", // Model type to use
}
Available Whisper models:
tiny.en: Fastest, lowest accuracybase.en: Good balance of speed and accuracysmall.en: Better accuracy, slowermedium.en: High accuracy, much slowerlarge-v2: Best accuracy, very slow
For production deployments, we recommend using system tools like logrotate for log management.
Example logrotate configuration (/etc/logrotate.d/mcp-server):
/var/log/mcp-server.log {
daily
rotate 7
compress
delaycompress
missingok
notifempty
create 644 mcp mcp
}
Best Practices
- Always use environment variables for sensitive information
- Keep .env files secure and never commit them to version control
- Use different environment files for development, test, and production
- Enable SSL/TLS in production (preferably via reverse proxy)
- Monitor log files for issues
- Regularly rotate logs in production
- Start with smaller Whisper models and upgrade if needed
- Consider GPU acceleration for larger Whisper models
Validation
The server validates configuration on startup using Zod schemas:
- Required fields are checked (e.g., HASS_TOKEN)
- Value types are verified
- Enums are validated (e.g., LOG_LEVEL, WHISPER_MODEL_TYPE)
- Default values are applied when not specified
Troubleshooting
Common configuration issues:
- Missing required environment variables
- Invalid environment variable values
- Permission issues with log directories
- Rate limiting too restrictive
- Speech model loading failures
- Docker not available for speech features
- Insufficient system resources for larger models
See the Troubleshooting Guide for solutions.
Configuration Guide
This document describes all available configuration options for the Home Assistant MCP Server.
Environment Variables
Required Settings
# Server Configuration
PORT=3000 # Server port
HOST=localhost # Server host
# Home Assistant
HASS_URL=http://localhost:8123 # Home Assistant URL
HASS_TOKEN=your_token # Long-lived access token
# Security
JWT_SECRET=your_secret # JWT signing secret
Optional Settings
# Rate Limiting
RATE_LIMIT_WINDOW=60000 # Time window in ms (default: 60000)
RATE_LIMIT_MAX=100 # Max requests per window (default: 100)
# Logging
LOG_LEVEL=info # debug, info, warn, error (default: info)
LOG_DIR=logs # Log directory (default: logs)
LOG_MAX_SIZE=10m # Max log file size (default: 10m)
LOG_MAX_FILES=5 # Max number of log files (default: 5)
# WebSocket/SSE
WS_HEARTBEAT=30000 # WebSocket heartbeat interval in ms (default: 30000)
SSE_RETRY=3000 # SSE retry interval in ms (default: 3000)
# Speech Features
ENABLE_SPEECH_FEATURES=false # Enable speech processing (default: false)
ENABLE_WAKE_WORD=false # Enable wake word detection (default: false)
ENABLE_SPEECH_TO_TEXT=false # Enable speech-to-text (default: false)
# Speech Model Configuration
WHISPER_MODEL_PATH=/models # Path to whisper models (default: /models)
WHISPER_MODEL_TYPE=base # Model type: tiny|base|small|medium|large-v2 (default: base)
WHISPER_LANGUAGE=en # Primary language (default: en)
WHISPER_TASK=transcribe # Task type: transcribe|translate (default: transcribe)
WHISPER_DEVICE=cuda # Processing device: cpu|cuda (default: cuda if available, else cpu)
# Wake Word Configuration
WAKE_WORDS=hey jarvis,ok google,alexa # Comma-separated wake words (default: hey jarvis)
WAKE_WORD_SENSITIVITY=0.5 # Detection sensitivity 0-1 (default: 0.5)
Speech Features
Model Selection
Choose a model based on your needs:
| Model | Size | Memory Required | Speed | Accuracy |
|---|---|---|---|---|
| tiny.en | 75MB | 1GB | Fast | Basic |
| base.en | 150MB | 2GB | Good | Good |
| small.en | 500MB | 4GB | Med | Better |
| medium.en | 1.5GB | 8GB | Slow | High |
| large-v2 | 3GB | 16GB | Slow | Best |
GPU Acceleration
When WHISPER_DEVICE=cuda:
- NVIDIA GPU with CUDA support required
- Significantly faster processing
- Higher memory requirements
Wake Word Detection
- Multiple wake words supported via comma-separated list
- Adjustable sensitivity (0-1):
- Lower values: Fewer false positives, may miss some triggers
- Higher values: More responsive, may have false triggers
- Default (0.5): Balanced detection
Best Practices
-
Model Selection:
- Start with
base.enmodel - Upgrade if better accuracy needed
- Downgrade if performance issues
- Start with
-
Resource Management:
- Monitor memory usage
- Use GPU acceleration when available
- Consider model size vs available resources
-
Wake Word Configuration:
- Use distinct wake words
- Adjust sensitivity based on environment
- Limit number of wake words for better performance