- Update MkDocs configuration with streamlined navigation and theme improvements - Revise README with comprehensive project introduction and key features - Add new documentation pages for NLP, custom prompts, and extras - Enhance index page with system architecture diagram and getting started guide - Improve overall documentation clarity and organization
5.1 KiB
5.1 KiB
Custom Prompts Guide 🎯
Overview
Custom prompts allow you to tailor the AI's behavior to your specific needs. I've designed this system to be flexible and powerful, enabling everything from simple commands to complex automation analysis.
Prompt Structure 📝
Custom prompts are defined in YAML format:
name: prompt_name
description: Brief description of what this prompt does
version: 1.0
author: your_name
tags: [automation, analysis, security]
models: [gpt-4, claude-2] # Compatible models
prompt: |
Your detailed prompt text here.
You can use {variables} for dynamic content.
Context: {context}
Data: {data}
variables:
- name: context
type: object
description: Contextual information
required: true
- name: data
type: array
description: Data to analyze
required: true
Prompt Types 🎨
1. Analysis Prompts
name: automation_analysis
description: Analyze Home Assistant automations
prompt: |
Analyze the following Home Assistant automation:
{automation_yaml}
Provide:
1. Security implications
2. Performance considerations
3. Potential improvements
4. Error handling suggestions
2. Command Prompts
name: natural_command
description: Process natural language commands
prompt: |
Convert the following natural language command into Home Assistant actions:
"{command}"
Available devices: {devices}
Current state: {state}
3. Query Prompts
name: state_query
description: Answer questions about system state
prompt: |
Answer the following question about the system state:
"{question}"
Current states:
{states}
Historical data:
{history}
Variables and Context 🔄
Built-in Variables
{timestamp}- Current time{user}- Current user{device_states}- All device states{last_events}- Recent events{system_info}- System information
Custom Variables
variables:
- name: temperature_threshold
type: number
default: 25
description: Temperature threshold for alerts
- name: devices
type: array
required: true
description: List of relevant devices
Creating Custom Prompts 🛠️
- Create a new file in
prompts/custom/:
bun run create-prompt my_prompt
- Edit the generated template:
name: my_custom_prompt
description: My custom prompt for specific tasks
version: 1.0
author: your_name
prompt: |
Your prompt text here
- Test your prompt:
bun run test-prompt my_custom_prompt
Advanced Features 🚀
1. Prompt Chaining
name: complex_analysis
chain:
- automation_analysis
- security_check
- optimization_suggestions
2. Conditional Prompts
name: adaptive_response
conditions:
- if: "temperature > 25"
use: high_temp_prompt
- if: "temperature < 10"
use: low_temp_prompt
- else: normal_temp_prompt
3. Dynamic Templates
name: dynamic_template
template: |
{% if time.hour < 12 %}
Good morning! Here's the morning analysis:
{% else %}
Good evening! Here's the evening analysis:
{% endif %}
{analysis_content}
Best Practices 🎯
-
Prompt Design
- Be specific and clear
- Include examples
- Use consistent formatting
- Consider edge cases
-
Variable Usage
- Define clear variable types
- Provide defaults when possible
- Document requirements
- Validate inputs
-
Performance
- Keep prompts concise
- Use appropriate models
- Cache when possible
- Consider token limits
-
Maintenance
- Version your prompts
- Document changes
- Test thoroughly
- Share improvements
Examples 📚
Home Security Analysis
name: security_analysis
description: Analyze home security status
prompt: |
Analyze the current security status:
Doors: {door_states}
Windows: {window_states}
Cameras: {camera_states}
Motion Sensors: {motion_states}
Recent Events:
{recent_events}
Provide:
1. Current security status
2. Potential vulnerabilities
3. Recommended actions
4. Automation suggestions
Energy Optimization
name: energy_optimization
description: Analyze and optimize energy usage
prompt: |
Review energy consumption patterns:
Usage Data: {energy_data}
Device States: {device_states}
Weather: {weather_data}
Provide:
1. Usage patterns
2. Inefficiencies
3. Optimization suggestions
4. Estimated savings
Troubleshooting 🔧
Common Issues
-
Prompt Not Working
- Verify YAML syntax
- Check variable definitions
- Validate model compatibility
- Review token limits
-
Poor Results
- Improve prompt specificity
- Add more context
- Try different models
- Include examples
-
Performance Issues
- Optimize prompt length
- Review caching strategy
- Check rate limits
- Monitor token usage
API Integration 🔌
// Load a custom prompt
const prompt = await loadPrompt('my_custom_prompt');
// Execute with variables
const result = await executePrompt(prompt, {
context: currentContext,
data: analysisData
});
See API Documentation for more details.